Giter Club home page Giter Club logo

yasar-arafath / fake_news_detection Goto Github PK

View Code? Open in Web Editor NEW
0.0 1.0 0.0 7.02 MB

Fake news do not require any introduction. It is very much easy to spread all the fake information in today’s all-connected world across the internet. Fake news is sometimes transmitted through the internet by some unauthorised sources, which creates issues for the targeted person and it makes them panic and leads to even violence. To combat the spread of fake news, it’s critical to determine the information’s legitimacy, which this Data Science project can help with. To do so, Python can be used, and a model is created using TfidfVectorizer. PassiveAggressiveClassifier can be implemented to distinguish between true and fake news. Pandas, NumPy, and sci-kit-learn are some Python packages suitable for this project, and we can utilize News.csv for the dataset.

License: MIT License

Python 100.00%

fake_news_detection's Introduction

Fake News Detection

Fake News Detection in Python

In this project, I have used various natural language processing techniques and machine learning algorithms to classify fake news articles using sci-kit libraries from python.

Dataset used

The data source used for this project is LIAR dataset which contains 3 files with .tsv format for test, train and validation. Below is some description about the data files used for this project.

LIAR: A BENCHMARK DATASET FOR FAKE NEWS DETECTION

William Yang Wang, "Liar, Liar Pants on Fire": A New Benchmark Dataset for Fake News Detection, to appear in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL 2017), short paper, Vancouver, BC, Canada, July 30-August 4, ACL.

the original dataset contained 13 variables/columns for train, test and validation sets as follows:

  • Column 1: the ID of the statement ([ID].json).
  • Column 2: the label. (Label class contains: True, Mostly-true, Half-true, Barely-true, FALSE, Pants-fire)
  • Column 3: the statement.
  • Column 4: the subject(s).
  • Column 5: the speaker.
  • Column 6: the speaker's job title.
  • Column 7: the state info.
  • Column 8: the party affiliation.
  • Column 9-13: the total credit history count, including the current statement.
  • 9: barely true counts.
  • 10: false counts.
  • 11: half true counts.
  • 12: mostly true counts.
  • 13: pants on fire counts.
  • Column 14: the context (venue / location of the speech or statement).

To make things simple I have chosen only 2 variables from this original dataset for this classification. The other variables can be added later to add some more complexity and enhance the features.

Below are the columns used to create 3 datasets that have been in used in this project

  • Column 1: Statement (News headline or text).
  • Column 2: Label (Label class contains: True, False)

You will see that newly created dataset has only 2 classes as compared to 6 from original classes. Below is method used for reducing the number of classes.

  • Original -- New
  • True -- True
  • Mostly-true -- True
  • Half-true -- True
  • Barely-true -- False
  • False -- False
  • Pants-fire -- False

The dataset used for this project were in csv format named train.csv, test.csv and valid.csv and can be found in repo. The original datasets are in "liar" folder in tsv format.

File descriptions

DataPrep.py

This file contains all the pre processing functions needed to process all input documents and texts. First we read the train, test and validation data files then performed some pre processing like tokenizing, stemming etc. There are some exploratory data analysis is performed like response variable distribution and data quality checks like null or missing values etc.

FeatureSelection.py

In this file we have performed feature extraction and selection methods from sci-kit learn python libraries. For feature selection, we have used methods like simple bag-of-words and n-grams and then term frequency like tf-tdf weighting. we have also used word2vec and POS tagging to extract the features, though POS tagging and word2vec has not been used at this point in the project.

classifier.py

Here we have build all the classifiers for predicting the fake news detection. The extracted features are fed into different classifiers. We have used Naive-bayes, Logistic Regression, Linear SVM, Stochastic gradient descent and Random forest classifiers from sklearn. Each of the extracted features were used in all of the classifiers. Once fitting the model, we compared the f1 score and checked the confusion matrix. After fitting all the classifiers, 2 best performing models were selected as candidate models for fake news classification. We have performed parameter tuning by implementing GridSearchCV methods on these candidate models and chosen best performing parameters for these classifier. Finally selected model was used for fake news detection with the probability of truth. In Addition to this, We have also extracted the top 50 features from our term-frequency tfidf vectorizer to see what words are most and important in each of the classes. We have also used Precision-Recall and learning curves to see how training and test set performs when we increase the amount of data in our classifiers.

prediction.py

Our finally selected and best performing classifier was Logistic Regression which was then saved on disk with name final_model.sav. Once you close this repository, this model will be copied to user's machine and will be used by prediction.py file to classify the fake news. It takes an news article as input from user then model is used for final classification output that is shown to user along with probability of truth.

Below is the Process Flow of the project:

Performance

Below is the learning curves for our candidate models.

Logistic Regression Classifier

Random Forest Classifier

Next steps

As we can see that our best performing models had an f1 score in the range of 70's. This is due to less number of data that we have used for training purposes and simplicity of our models. For the future implementations, we could introduce some more feature selection methods such as POS tagging, word2vec and topic modeling. In addition, we could also increase the training data size. We will extend this project to implement these techniques in future to increase the accuracy and performance of our models.

Installing and steps to run the software

A step by step series of examples that tell you have to get a development env running

  1. The first step would be to clone this repo in a folder in your local machine. To do that you need to run following command in command prompt or in git bash
$ git clone https://github.com/nishitpatel01/Fake_News_Detection.git
  1. This will copy all the data source file, program files and model into your machine.

    • If you have chosen to install anaconda then follow below instructions
      • After all the files are saved in a folder in your machine. If you chosen to install anaconda from the steps given in Prerequisites sections then open the anaconda prompt, change the directory to the folder where this project is saved in your machine and type below command and press enter.
    cd C:/your cloned project folder path goes here/
    
    • Once you are inside the directory call the prediction.py file, To do this, run below command in anaconda prompt.
    python prediction.py
    
    • After hitting the enter, program will ask for an input which will be a piece of information or a news headline that you want to verify. Once you paste or type news headline, then press enter.

    • Once you hit the enter, program will take user input (news headline) and will be used by model to classify in one of categories of "True" and "False". Along with classifying the news headline, model will also provide a probability of truth associated with it.

  2. If you have chosen to install python (and did not set up PATH variable for it) then follow below instructions:

    • After you clone the project in a folder in your machine. Open command prompt and change the directory to project directory by running below command.
    cd C:/your cloned project folder path goes here/
    
    • Locate python.exe in your machine. you can search this in window explorer search bar.
    • Once you locate the python.exe path, you need to write whole path of it and then entire path of project folder with prediction.py at the end. For example if your python.exe is located at c:/Python36/python.exe and project folder is at c:/users/user_name/desktop/fake_news_detection/, then your command to run program will be as below:
    c:/Python36/python.exe C:/users/user_name/desktop/fake_news_detection/prediction.py
    
    • After hitting the enter, program will ask for an input which will be a piece of information or a news headline that you want to verify. Once you paste or type news headline, then press enter.

    • Once you hit the enter, program will take user input (news headline) and will be used by model to classify in one of categories of "True" and "False". Along with classifying the news headline, model will also provide a probability of truth associated with it. It might take few seconds for model to classify the given statement so wait for it.

  3. If you have chosen to install python (and already setup PATH variable for python.exe) then follow instructions:

    • Open the command prompt and change the directory to project folder as mentioned in above by running below command
    cd C:/your cloned project folder path goes here/
    
    • run below command
    python.exe C:/your cloned project folder path goes here/
    
    • After hitting the enter, program will ask for an input which will be a piece of information or a news headline that you want to verify. Once you paste or type news headline, then press enter.

    • Once you hit the enter, program will take user input (news headline) and will be used by model to classify in one of categories of "True" and "False". Along with classifying the news headline, model will also provide a probability of truth associated with it.

fake_news_detection's People

Contributors

yasar-arafath avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.