Giter Club home page Giter Club logo

ds-confusion-matrix-nyc-ds-100218's Introduction

Confusion Matrix

Another way to look at the performance of a classification algorith is to look at the confusion matrix. The confusion matrix represents the counts (or normalized counts) of our True Positives, False Positives, True Negatives and False Negatives. This can further be visualized when analyzing the effectiveness of our classification algorithm.

Here's an example of generating a confusion matrix:

With that, let's look at some code for generating this visual.

Create our model

As usual, we start by fitting a model to our data by importing, normalizing, splitting into train and test sets and then calling our algorithm.

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd


#Load the data
df = pd.read_csv('heart.csv')

#Define appropriate X and y
X = df[df.columns[:-1]]
y = df.target

#Normalize the Data
for col in df.columns:
    df[col] = (df[col]-min(df[col]))/ (max(df[col]) - min(df[col]))

# Split the data into train and test sets.
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

#Fit a model
logreg = LogisticRegression(fit_intercept = False, C = 1e12) #Starter code
model_log = logreg.fit(X_train, y_train)
print(model_log) #Preview model params

#Predict
y_hat_test = logreg.predict(X_test)

#Data Preview
df.head()
LogisticRegression(C=1000000000000.0, class_weight=None, dual=False,
          fit_intercept=False, intercept_scaling=1, max_iter=100,
          multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
          solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
0 0.708333 1.0 1.000000 0.481132 0.244292 1.0 0.0 0.603053 0.0 0.370968 0.0 0.0 0.333333 1.0
1 0.166667 1.0 0.666667 0.339623 0.283105 0.0 0.5 0.885496 0.0 0.564516 0.0 0.0 0.666667 1.0
2 0.250000 0.0 0.333333 0.339623 0.178082 0.0 0.0 0.770992 0.0 0.225806 1.0 0.0 0.666667 1.0
3 0.562500 1.0 0.333333 0.245283 0.251142 0.0 0.5 0.816794 0.0 0.129032 1.0 0.0 0.666667 1.0
4 0.583333 0.0 0.000000 0.245283 0.520548 0.0 0.5 0.702290 1.0 0.096774 1.0 0.0 0.666667 1.0

Create the confusion matrix

From there it's very easy to create the raw confusion matrix using built in methods:

from sklearn.metrics import confusion_matrix

cnf_matrix = confusion_matrix(y_hat_test, y_test)
print('Confusion Matrix:\n',cnf_matrix)
Confusion Matrix:
 [[24  4]
 [ 9 39]]

Creating a Nice Visual

Creating a pretty visual is a little more complicated. Generating the initial image is simple but we have to use the itertools package to iterate over the matrix and append labels to the individual cells.

import numpy as np
import itertools
import matplotlib.pyplot as plt
%matplotlib inline

plt.imshow(cnf_matrix,  cmap=plt.cm.Blues) #Create the basic matrix.

#Add title and Axis Labels
plt.title('Confusion Matrix')
plt.ylabel('True label')
plt.xlabel('Predicted label')

#Add appropriate Axis Scales
class_names = set(y) #Get class labels to add to matrix
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names, rotation=45)
plt.yticks(tick_marks, class_names)

#Add Labels to Each Cell
thresh = cnf_matrix.max() / 2. #Used for text coloring below
#Here we iterate through the confusion matrix and append labels to our visualization.
for i, j in itertools.product(range(cnf_matrix.shape[0]), range(cnf_matrix.shape[1])):
        plt.text(j, i, cnf_matrix[i, j],
                 horizontalalignment="center",
                 color="white" if cnf_matrix[i, j] > thresh else "black")

#Add a Side Bar Legend Showing Colors
plt.colorbar()
<matplotlib.colorbar.Colorbar at 0x1a16cda7f0>

png

Create a general function that plots the confusion matrix

Generalize the above code into a function that you can reuse to create confusion matrix visuals going forward.

def plot_confusion_matrix(cm, classes,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    #Pseudocode/Outline:
    #Print the confusion matrix (optional)
    #Create the basic matrix.
    #Add title and Axis Labels
    #Add appropriate Axis Scales
    #Add Labels to Each Cell
    #Add a Side Bar Legend Showing Colors

Update your function to include an option for normalization.

When the normalization parameter is set to True, your function should return percentages for the each label class in the visual rather then raw counts.

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    #Check if Normalization Option is Set to True. If so, normalize the raw confusion matrix before visualizing
    
    #Other code should be equivalent to your previous function

    #Print the confusion matrix (optional)
    #Create the basic matrix.
    #Add title and Axis Labels
    #Add appropriate Axis Scales
    #Add Labels to Each Cell
    #Add a Side Bar Legend Showing Colors

Create a normalized confusion matrix

Call you function to create a normalized confusion matrix for the model above.

# Plot normalized confusion matrix
# Your code here
Normalized confusion matrix
[[0.85714286 0.14285714]
 [0.1875     0.8125    ]]

png

Conclusion

Well done! In this lab we previewed the confusion matrix and practice our matplotlib skills for producing visualizations!

ds-confusion-matrix-nyc-ds-100218's People

Contributors

mathymitchell avatar fpolchow avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.