Giter Club home page Giter Club logo

dsp's Introduction

dsp

Dynamic Shrinkage Processes

This package provides a full, efficient MCMC sampling algorithm for dynamic shrinkage processes (DSPs). DSPs extend popular global-local shrinkage priors, such as the horseshoe prior for sparse signals, to the time series setting by allowing the shrinkage behavior to depend on the history of the shrinkage process. The resulting processes are locally adaptive, which is important for time series data and regression functions with irregular features.

The package provides the component samplers for the Gibbs sampler for DSPs, as well as a full MCMC implementation for Bayesian trend filtering (BTF) with dynamic horseshoe processes as the prior (penalty). BTF estimates are used for curve-fitting of univariate data, typically with irregular features. The BTF model is implemented using a dynamic linear model (DLM) framework, which provides efficient computations and a platform for useful extensions. BTF penalizes differences (first or second, in this case) of the conditional expectation (i.e., the signal) to produce approximately locally constant or locally linear estimates. We use DSPs as the prior on the 1st/2nd differences, which produces curve estimates and credible bands that are highly adaptive to both rapidly- and slowly-changing features. We also provide BTF model implementations for the (static) horseshoe (HS) prior and a normal- inverse-Gamma (NIG) prior. In all cases, computations are linear in the number of time points, so the MCMC samplers are highly efficient.

Besides curve-fitting via BTF, we include full, efficient MCMC sampling algorithms for dynamic shrinkage processes applied to (1) dynamic regression with time-varying coefficients and (2) B-spline models for curve-fitting. In the dynamic regression model, we regress a dynamic (scalar) response on a vector of dynamic predictors for which the corresponding regression coefficients are time-varying. The 1st/2nd differences of the regression coefficients are penalized using DSPs (with options for HS and NIG priors), allowing for highly adaptive regression functions. In the B-spline setting, we penalize 1st/2nd differences of the B-spline basis coefficients, similar to P-splines, using DSPs (with options for HS and NIG priors). The resulting curve-fitting model is highly adaptive, like the BTF model above, but easily incorporates unequally-spaced observation points.

dsp's People

Contributors

drkowal avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.