Giter Club home page Giter Club logo

sm64-port-android's Introduction

Super Mario 64 Android Port

If you want to compile Super Mario 64 for Android on PC you'll probably want to clone this repo instead! If you want to compile on Android using Termux (make sure you use the F-Droid version, as the Google Play version is outdated), follow these instructions in Termux:

Install dependencies:

pkg install git wget make python getconf zip apksigner clang

Clone the repository:

git clone https://github.com/VDavid003/sm64-port-android
cd sm64-port-android

Copy in your baserom:

Do this using your default file manager (on AOSP, you can slide on the left and there will be a "Termux" option there), or using Termux

termux-setup-storage
cp /sdcard/path/to/your/baserom.z64 ./baserom.us.z64

Get SDL includes:

./getSDL.sh

Build:

# if you have more cores available, you can increase the --jobs parameter
make --jobs 4

Enjoy your apk:

ls -al build/us_pc/sm64.us.f3dex2e.apk

Super Mario 64 Port

  • This repo contains a full decompilation of Super Mario 64 (J), (U), and (E) with minor exceptions in the audio subsystem.
  • Naming and documentation of the source code and data structures are in progress.
  • Efforts to decompile the Shindou ROM steadily advance toward a matching build.
  • Beyond Nintendo 64, it can also target Linux and Windows natively.

This repo does not include all assets necessary for compiling the game. A prior copy of the game is required to extract the assets.

Building native executables

Linux

  1. Install prerequisites (Ubuntu): sudo apt install -y git build-essential pkg-config libusb-1.0-0-dev libsdl2-dev.
  2. Clone the repo: git clone https://github.com/sm64-port/sm64-port.git, which will create a directory sm64-port and then enter it cd sm64-port.
  3. Place a Super Mario 64 ROM called baserom.<VERSION>.z64 into the repository's root directory for asset extraction, where VERSION can be us, jp, or eu.
  4. Run make to build. Qualify the version through make VERSION=<VERSION>. Add -j4 to improve build speed (hardware dependent based on the amount of CPU cores available).
  5. The executable binary will be located at build/<VERSION>_pc/sm64.<VERSION>.f3dex2e.

Windows

  1. Install and update MSYS2, following all the directions listed on https://www.msys2.org/.
  2. From the start menu, launch MSYS2 MinGW and install required packages depending on your machine (do NOT launch "MSYS2 MSYS"):
  • 64-bit: Launch "MSYS2 MinGW 64-bit" and install: pacman -S git make python3 mingw-w64-x86_64-gcc
  • 32-bit (will also work on 64-bit machines): Launch "MSYS2 MinGW 32-bit" and install: pacman -S git make python3 mingw-w64-i686-gcc
  • Do NOT by mistake install the package called simply gcc.
  1. The MSYS2 terminal has a current working directory that initially is C:\msys64\home\<username> (home directory). At the prompt, you will see the current working directory in yellow. ~ is an alias for the home directory. You can change the current working directory to My Documents by entering cd /c/Users/<username>/Documents.
  2. Clone the repo: git clone https://github.com/sm64-port/sm64-port.git, which will create a directory sm64-port and then enter it cd sm64-port.
  3. Place a Super Mario 64 ROM called baserom.<VERSION>.z64 into the repository's root directory for asset extraction, where VERSION can be us, jp, or eu.
  4. Run make to build. Qualify the version through make VERSION=<VERSION>. Add -j4 to improve build speed (hardware dependent based on the amount of CPU cores available).
  5. The executable binary will be located at build/<VERSION>_pc/sm64.<VERSION>.f3dex2e.exe inside the repository.

Troubleshooting

  1. If you get make: gcc: command not found or make: gcc: No such file or directory although the packages did successfully install, you probably launched the wrong MSYS2. Read the instructions again. The terminal prompt should contain "MINGW32" or "MINGW64" in purple text, and NOT "MSYS".
  2. If you get Failed to open baserom.us.z64! you failed to place the baserom in the repository. You can write ls to list the files in the current working directory. If you are in the sm64-port directory, make sure you see it here.
  3. If you get make: *** No targets specified and no makefile found. Stop., you are not in the correct directory. Make sure the yellow text in the terminal ends with sm64-port. Use cd <dir> to enter the correct directory. If you write ls you should see all the project files, including Makefile if everything is correct.
  4. If you get any error, be sure MSYS2 packages are up to date by executing pacman -Syu and pacman -Su. If the MSYS2 window closes immediately after opening it, restart your computer.
  5. When you execute gcc -v, be sure you see Target: i686-w64-mingw32 or Target: x86_64-w64-mingw32. If you see Target: x86_64-pc-msys, you either opened the wrong MSYS start menu entry or installed the incorrect gcc package.
  6. When switching between building for other platforms, run make -C tools clean first to allow for the tools to recompile on the new platform. This also helps when switching between shells like WSL and MSYS2.

Debugging

The code can be debugged using gdb. On Linux install the gdb package and execute gdb <executable>. On MSYS2 install by executing pacman -S winpty gdb and execute winpty gdb <executable>. The winpty program makes sure the keyboard works correctly in the terminal. Also consider changing the -mwindows compile flag to -mconsole to be able to see stdout/stderr as well as be able to press Ctrl+C to interrupt the program. In the Makefile, make sure you compile the sources using -g rather than -O2 to include debugging symbols. See any online tutorial for how to use gdb.

ROM building

It is possible to build N64 ROMs as well with this repository. See https://github.com/n64decomp/sm64 for instructions.

Project Structure

sm64
├── actors: object behaviors, geo layout, and display lists
├── asm: handwritten assembly code, rom header
│   └── non_matchings: asm for non-matching sections
├── assets: animation and demo data
│   ├── anims: animation data
│   └── demos: demo data
├── bin: C files for ordering display lists and textures
├── build: output directory
├── data: behavior scripts, misc. data
├── doxygen: documentation infrastructure
├── enhancements: example source modifications
├── include: header files
├── levels: level scripts, geo layout, and display lists
├── lib: SDK library code
├── rsp: audio and Fast3D RSP assembly code
├── sound: sequences, sound samples, and sound banks
├── src: C source code for game
│   ├── audio: audio code
│   ├── buffers: stacks, heaps, and task buffers
│   ├── engine: script processing engines and utils
│   ├── game: behaviors and rest of game source
│   ├── goddard: Mario intro screen
│   ├── menu: title screen and file, act, and debug level selection menus
│   └── pc: port code, audio and video renderer
├── text: dialog, level names, act names
├── textures: skybox and generic texture data
└── tools: build tools

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Run clang-format on your code to ensure it meets the project's coding standards.

Official Discord: https://discord.gg/7bcNTPK

sm64-port-android's People

Contributors

vdavid003 avatar ahouts avatar mountainflaw avatar ariahiro64 avatar bramhaag avatar jan200101 avatar mkst avatar matt-kempster avatar nadiaholmquist avatar niansa avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.