Giter Club home page Giter Club logo

guide's Introduction

Uber Go Style Guide

Table of Contents

Introduction

Styles are the conventions that govern our code. The term style is a bit of a misnomer, since these conventions cover far more than just source file formatting—gofmt handles that for us.

The goal of this guide is to manage this complexity by describing in detail the Dos and Don'ts of writing Go code at Uber. These rules exist to keep the code base manageable while still allowing engineers to use Go language features productively.

This guide was originally created by Prashant Varanasi and Simon Newton as a way to bring some colleagues up to speed with using Go. Over the years it has been amended based on feedback from others.

This documents idiomatic conventions in Go code that we follow at Uber. A lot of these are general guidelines for Go, while others extend upon external resources:

  1. Effective Go
  2. Go Common Mistakes
  3. Go Code Review Comments

All code should be error-free when run through golint and go vet. We recommend setting up your editor to:

  • Run goimports on save
  • Run golint and go vet to check for errors

You can find information in editor support for Go tools here: https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins

Guidelines

Pointers to Interfaces

You almost never need a pointer to an interface. You should be passing interfaces as values—the underlying data can still be a pointer.

An interface is two fields:

  1. A pointer to some type-specific information. You can think of this as "type."
  2. Data pointer. If the data stored is a pointer, it’s stored directly. If the data stored is a value, then a pointer to the value is stored.

If you want interface methods to modify the underlying data, you must use a pointer.

아래는 인터페이스 예시 (인터페이스 설명 [link])

type Animal interface {
	run()
}

type Dog struct {
}

func (d Dog) run()  {
	println("run")
}

Verify Interface Compliance

Verify interface compliance at compile time where appropriate. This includes:

  • Exported types that are required to implement specific interfaces as part of their API contract
  • Exported or unexported types that are part of a collection of types implementing the same interface
  • Other cases where violating an interface would break users
BadGood
type Handler struct {
  // ...
}



func (h *Handler) ServeHTTP(
  w http.ResponseWriter,
  r *http.Request,
) {
  ...
}
type Handler struct {
  // ...
}

var _ http.Handler = (*Handler)(nil)

func (h *Handler) ServeHTTP(
  w http.ResponseWriter,
  r *http.Request,
) {
  // ...
}

Handler가 http.Handler 인터페이스와 매치가 되는지 컴파일

The statement var _ http.Handler = (*Handler)(nil) will fail to compile if *Handler ever stops matching the http.Handler interface.

The right hand side of the assignment should be the zero value of the asserted type. This is nil for pointer types (like *Handler), slices, and maps, and an empty struct for struct types.

type LogHandler struct {
  h   http.Handler
  log *zap.Logger
}

var _ http.Handler = LogHandler{}

func (h LogHandler) ServeHTTP(
  w http.ResponseWriter,
  r *http.Request,
) {
  // ...
}

Receivers and Interfaces

Methods with value receivers can be called on pointers as well as values. Methods with pointer receivers can only be called on pointers or addressable values.

For example,

type S struct {
  data string
}

func (s S) Read() string {
  return s.data
}

func (s *S) Write(str string) {
  s.data = str
}

sVals := map[int]S{1: {"A"}}

// You can only call Read using a value
sVals[1].Read()

// This will not compile:
//  sVals[1].Write("test")

sPtrs := map[int]*S{1: {"A"}}

// You can call both Read and Write using a pointer
sPtrs[1].Read()
sPtrs[1].Write("test")

Similarly, an interface can be satisfied by a pointer, even if the method has a value receiver.

type F interface {
  f()
}

type S1 struct{}

func (s S1) f() {}

type S2 struct{}

func (s *S2) f() {}

s1Val := S1{}
s1Ptr := &S1{}
s2Val := S2{}
s2Ptr := &S2{}

var i F
i = s1Val
i = s1Ptr
i = s2Ptr

// The following doesn't compile, since s2Val is a value, and there is no value receiver for f.
//   i = s2Val

Effective Go has a good write up on Pointers vs. Values.

Zero-value Mutexes are Valid

The zero-value of sync.Mutex and sync.RWMutex is valid, so you almost never need a pointer to a mutex.

BadGood
mu := new(sync.Mutex)
mu.Lock()
var mu sync.Mutex
mu.Lock()

If you use a struct by pointer, then the mutex should be a non-pointer field on it. Do not embed the mutex on the struct, even if the struct is not exported.

BadGood
type SMap struct {
  sync.Mutex

  data map[string]string
}

func NewSMap() *SMap {
  return &SMap{
    data: make(map[string]string),
  }
}

func (m *SMap) Get(k string) string {
  m.Lock()
  defer m.Unlock()

  return m.data[k]
}
type SMap struct {
  mu sync.Mutex

  data map[string]string
}

func NewSMap() *SMap {
  return &SMap{
    data: make(map[string]string),
  }
}

func (m *SMap) Get(k string) string {
  m.mu.Lock()
  defer m.mu.Unlock()

  return m.data[k]
}

The Mutex field, and the Lock and Unlock methods are unintentionally part of the exported API of SMap.

The mutex and its methods are implementation details of SMap hidden from its callers.

Copy Slices and Maps at Boundaries

Slices and maps contain pointers to the underlying data so be wary of scenarios when they need to be copied.

Receiving Slices and Maps

Keep in mind that users can modify a map or slice you received as an argument if you store a reference to it.

Bad Good
func (d *Driver) SetTrips(trips []Trip) {
  d.trips = trips
}

trips := ...
d1.SetTrips(trips)

// Did you mean to modify d1.trips?
trips[0] = ...
func (d *Driver) SetTrips(trips []Trip) {
  d.trips = make([]Trip, len(trips))
  copy(d.trips, trips)
}

trips := ...
d1.SetTrips(trips)

// We can now modify trips[0] without affecting d1.trips.
trips[0] = ...

Returning Slices and Maps

Similarly, be wary of user modifications to maps or slices exposing internal state.

BadGood
type Stats struct {
  mu sync.Mutex
  counters map[string]int
}

// Snapshot returns the current stats.
func (s *Stats) Snapshot() map[string]int {
  s.mu.Lock()
  defer s.mu.Unlock()

  return s.counters
}

// snapshot is no longer protected by the mutex, so any
// access to the snapshot is subject to data races.
snapshot := stats.Snapshot()
type Stats struct {
  mu sync.Mutex
  counters map[string]int
}

func (s *Stats) Snapshot() map[string]int {
  s.mu.Lock()
  defer s.mu.Unlock()

  result := make(map[string]int, len(s.counters))
  for k, v := range s.counters {
    result[k] = v
  }
  return result
}

// Snapshot is now a copy.
snapshot := stats.Snapshot()

Defer to Clean Up

Use defer to clean up resources such as files and locks.

BadGood
p.Lock()
if p.count < 10 {
  p.Unlock()
  return p.count
}

p.count++
newCount := p.count
p.Unlock()

return newCount

// easy to miss unlocks due to multiple returns
p.Lock()
defer p.Unlock()

if p.count < 10 {
  return p.count
}

p.count++
return p.count

// more readable

Defer has an extremely small overhead and should be avoided only if you can prove that your function execution time is in the order of nanoseconds. The readability win of using defers is worth the miniscule cost of using them. This is especially true for larger methods that have more than simple memory accesses, where the other computations are more significant than the defer.

Channel Size is One or None

Channels should usually have a size of one or be unbuffered. By default, channels are unbuffered and have a size of zero. Any other size must be subject to a high level of scrutiny. Consider how the size is determined, what prevents the channel from filling up under load and blocking writers, and what happens when this occurs.

channel size

0: sender는 receiver가 값을 읽을 때까지 기다린다.

1: sender는 receiver가 값을 받았다고 가정하고 행동한다. 즉, concurrency를 허용한다.

n: 버퍼

채널

package main

import (
	"fmt"
)

func main() {
	done := make(chan bool, 1)

	go func() {
		for i := 0; i < 6; i++ {
			done <- true

			fmt.Println("고루틴 : ", i)
		}
	}()

	for i := 0; i < 6; i++ {
		<-done

		fmt.Println("메인 함수 : ", i)
	}
}
BadGood
// Ought to be enough for anybody!
c := make(chan int, 64)
// Size of one
c := make(chan int, 1) // or
// Unbuffered channel, size of zero
c := make(chan int)

Start Enums at One

The standard way of introducing enumerations in Go is to declare a custom type and a const group with iota. Since variables have a 0 default value, you should usually start your enums on a non-zero value.

BadGood
type Operation int

const (
  Add Operation = iota
  Subtract
  Multiply
)

// Add=0, Subtract=1, Multiply=2
type Operation int

const (
  Add Operation = iota + 1
  Subtract
  Multiply
)

// Add=1, Subtract=2, Multiply=3

There are cases where using the zero value makes sense, for example when the zero value case is the desirable default behavior.

type LogOutput int

const (
  LogToStdout LogOutput = iota
  LogToFile
  LogToRemote
)

// LogToStdout=0, LogToFile=1, LogToRemote=2

Use "time" to handle time

Time is complicated. Incorrect assumptions often made about time include the following.

  1. A day has 24 hours
  2. An hour has 60 minutes
  3. A week has 7 days
  4. A year has 365 days
  5. And a lot more

For example, 1 means that adding 24 hours to a time instant will not always yield a new calendar day.

Therefore, always use the "time" package when dealing with time because it helps deal with these incorrect assumptions in a safer, more accurate manner.

int type 으로 의미상 ‘초’ 에 해당하는 값을 받지 말고, param 자체를 time.Time 혹은 time.Duration 으로 직접 받으라는 의미이다.

Use time.Time for instants of time

Use time.Time when dealing with instants of time, and the methods on time.Time when comparing, adding, or subtracting time.

BadGood
func isActive(now, start, stop int) bool {
  return start <= now && now < stop
}
func isActive(now, start, stop time.Time) bool {
  return (start.Before(now) || start.Equal(now)) && now.Before(stop)
}

Use time.Duration for periods of time

Use time.Duration when dealing with periods of time.

BadGood
func poll(delay int) {
  for {
    // ...
    time.Sleep(time.Duration(delay) * time.Millisecond)
  }
}

poll(10) // was it seconds or milliseconds?
func poll(delay time.Duration) {
  for {
    // ...
    time.Sleep(delay)
  }
}

poll(10*time.Second)

Going back to the example of adding 24 hours to a time instant, the method we use to add time depends on intent. If we want the same time of the day, but on the next calendar day, we should use Time.AddDate. However, if we want an instant of time guaranteed to be 24 hours after the previous time, we should use Time.Add.

newDay := t.AddDate(0 /* years */, 0 /* months */, 1 /* days */)
maybeNewDay := t.Add(24 * time.Hour)

Use time.Time and time.Duration with external systems

Use time.Duration and time.Time in interactions with external systems when possible. For example:

When it is not possible to use time.Duration in these interactions, use int or float64 and include the unit in the name of the field.

For example, since encoding/json does not support time.Duration, the unit is included in the name of the field.

BadGood
// {"interval": 2}
type Config struct {
  Interval int `json:"interval"`
}
// {"intervalMillis": 2000}
type Config struct {
  IntervalMillis int `json:"intervalMillis"`
}

When it is not possible to use time.Time in these interactions, unless an alternative is agreed upon, use string and format timestamps as defined in RFC 3339. This format is used by default by Time.UnmarshalText and is available for use in Time.Format and time.Parse via time.RFC3339.

Although this tends to not be a problem in practice, keep in mind that the "time" package does not support parsing timestamps with leap seconds (8728), nor does it account for leap seconds in calculations (15190). If you compare two instants of time, the difference will not include the leap seconds that may have occurred between those two instants.

Errors

Error Types

에러를 선언하는데 있어서 다양한 옵션들이 존재한다:

  • errors.New 간단한 정적 문자열(simple static strings)과 함께하는 에러
  • fmt.Errorf 형식화된 오류 문자열
  • Error() 메서드를 구현한 커스텀 타입 (Custom types)

오류를 반환할 때, 가장 좋은 선택을 하기 위해서 아래의 사항을 고려하라:

  • 추가 정보가 필요없는 간단한 에러인가? 그렇다면, errors.New가 충분하다.
  • 클라이언트가 오류를 감지하고 처리(handle)해야 하는가? 그렇다면, 커스텀 타입을 사용해야 하고 Error() 메서드를 구현해야 한다.
  • 다운스트림 함수(downstream function)에 의해 반환된 에러를 전파(propagating)하고 있는가? 그렇다면, 오류 포장(Error Wrapping)을 참고하라.
  • 이외의 경우, fmt.Errorf 로 충분하다.

만약 클라이언트가 오류를 감지해야 하고, 여러분들이 errors.New을 사용하여 간단한 에러를 생성한 경우, var에 에러를 사용해라.

No error matchingError matching
// package foo

func Open() error {
  return errors.New("could not open")
}

// package bar

if err := foo.Open(); err != nil {
  // Can't handle the error.
  panic("unknown error")
}
// package foo

var ErrCouldNotOpen = errors.New("could not open")

func Open() error {
  return ErrCouldNotOpen
}

// package bar

if err := foo.Open(); err != nil {
  if errors.Is(err, foo.ErrCouldNotOpen) {
    // handle the error
  } else {
    panic("unknown error")
  }
}

만약 클라이언트가 감지해야 할 오류가 있고 여러분들이 이를 추가하려고 하는 경우, 그것에 대한 자세한 정보를 추가하고 싶을 것이다. (예를들어, 정적 문자열이 아닌 경우), 이러할 경우, 여러분들은 커스텀 타입을 사용해야 한다.

No error matchingError matching
// package foo

func Open(file string) error {
  return fmt.Errorf("file %q not found", file)
}

// package bar

if err := foo.Open("testfile.txt"); err != nil {
  // Can't handle the error.
  panic("unknown error")
}
// package foo

type NotFoundError struct {
  File string
}

func (e *NotFoundError) Error() string {
  return fmt.Sprintf("file %q not found", e.File)
}

func Open(file string) error {
  return &NotFoundError{File: file}
}


// package bar

if err := foo.Open("testfile.txt"); err != nil {
  var notFound *NotFoundError
  if errors.As(err, &notFound) {
    // handle the error
  } else {
    panic("unknown error")
  }
}

Note that if you export error variables or types from a package, they will become part of the public API of the package.

Error Wrapping

호출이 실패할 경우 에러를 전파(propagating)하기 위한 주요 옵션이 있다:

  • 추가적인 컨텍스트(additional context)가 없고 원래의 에러 타입을 유지하려는 경우 본래의 에러(original error)를 반환.
  • 호출자(callers)가 특정한 에러 케이스를(specific error case)를 감지하거나 다룰(handle) 필요가 없는 경우 fmt.Errorf를 사용.

"connection refused"와 같은 모호한 오류보다, 컨텍스트를 추가하는 것을 추천한다. 따라서 여러분들은 "call service foo: connection refused."와 같이 더욱 유용한 에러를 얻을 수 있을 것이다.

반환된 오류에서 컨텍스트를 추가 할 때, "failed to"와 같은 사족의 명백한 문구를 피하며 컨텍스트를 간결하게 유지하도록 해라. 이러한 문구들이 에러가 스택에 퍼지면서/스며들면서(percolates) 계속해서 쌓이게 된다:

BadGood
s, err := store.New()
if err != nil {
    return fmt.Errorf(
        "failed to create new store: %w", err)
}
s, err := store.New()
if err != nil {
    return fmt.Errorf(
        "new store: %w", err)
}
failed to x: failed to y: failed to create new store: the error
x: y: new store: the error

However once the error is sent to another system, it should be clear the message is an error (e.g. an err tag or "Failed" prefix in logs).

See also Don't just check errors, handle them gracefully.

Error Naming

For error values stored as global variables, use the prefix Err or err depending on whether they're exported. This guidance supersedes the Prefix Unexported Globals with _.

var (
  // The following two errors are exported
  // so that users of this package can match them
  // with errors.Is.

  ErrBrokenLink = errors.New("link is broken")
  ErrCouldNotOpen = errors.New("could not open")

  // This error is not exported because
  // we don't want to make it part of our public API.
  // We may still use it inside the package
  // with errors.Is.

  errNotFound = errors.New("not found")
)

For custom error types, use the suffix Error instead.

// Similarly, this error is exported
// so that users of this package can match it
// with errors.As.

type NotFoundError struct {
  File string
}

func (e *NotFoundError) Error() string {
  return fmt.Sprintf("file %q not found", e.File)
}

// And this error is not exported because
// we don't want to make it part of the public API.
// We can still use it inside the package
// with errors.As.

type resolveError struct {
  Path string
}

func (e *resolveError) Error() string {
  return fmt.Sprintf("resolve %q", e.Path)
}

Handle Type Assertion Failures

The single return value form of a type assertion will panic on an incorrect type. Therefore, always use the "comma ok" idiom.

BadGood
t := i.(string)
t, ok := i.(string)
if !ok {
  // handle the error gracefully
}

Don't Panic

Code running in production must avoid panics. Panics are a major source of cascading failures. If an error occurs, the function must return an error and allow the caller to decide how to handle it.

BadGood
func run(args []string) {
  if len(args) == 0 {
    panic("an argument is required")
  }
  // ...
}

func main() {
  run(os.Args[1:])
}
func run(args []string) error {
  if len(args) == 0 {
    return errors.New("an argument is required")
  }
  // ...
  return nil
}

func main() {
  if err := run(os.Args[1:]); err != nil {
    fmt.Fprintln(os.Stderr, err)
    os.Exit(1)
  }
}

Panic/recover is not an error handling strategy. A program must panic only when something irrecoverable happens such as a nil dereference. An exception to this is program initialization: bad things at program startup that should abort the program may cause panic.

var _statusTemplate = template.Must(template.New("name").Parse("_statusHTML"))

Even in tests, prefer t.Fatal or t.FailNow over panics to ensure that the test is marked as failed.

BadGood
// func TestFoo(t *testing.T)

f, err := ioutil.TempFile("", "test")
if err != nil {
  panic("failed to set up test")
}
// func TestFoo(t *testing.T)

f, err := ioutil.TempFile("", "test")
if err != nil {
  t.Fatal("failed to set up test")
}

Exit in Main

Go programs use os.Exit or log.Fatal* to exit immediately. (Panicking is not a good way to exit programs, please don't panic.)

Call one of os.Exit or log.Fatal* only in main(). All other functions should return errors to signal failure.

BadGood
func main() {
  body := readFile(path)
  fmt.Println(body)
}

func readFile(path string) string {
  f, err := os.Open(path)
  if err != nil {
    log.Fatal(err)
  }

  b, err := ioutil.ReadAll(f)
  if err != nil {
    log.Fatal(err)
  }

  return string(b)
}
func main() {
  body, err := readFile(path)
  if err != nil {
    log.Fatal(err)
  }
  fmt.Println(body)
}

func readFile(path string) (string, error) {
  f, err := os.Open(path)
  if err != nil {
    return "", err
  }

  b, err := ioutil.ReadAll(f)
  if err != nil {
    return "", err
  }

  return string(b), nil
}

Rationale: Programs with multiple functions that exit present a few issues:

  • Non-obvious control flow: Any function can exit the program so it becomes difficult to reason about the control flow.
  • Difficult to test: A function that exits the program will also exit the test calling it. This makes the function difficult to test and introduces risk of skipping other tests that have not yet been run by go test.
  • Skipped cleanup: When a function exits the program, it skips function calls enqueued with defer statements. This adds risk of skipping important cleanup tasks.

Exit Once

If possible, prefer to call os.Exit or log.Fatal at most once in your main(). If there are multiple error scenarios that halt program execution, put that logic under a separate function and return errors from it.

This has the effect of shortening your main() function and putting all key business logic into a separate, testable function.

BadGood
package main

func main() {
  args := os.Args[1:]
  if len(args) != 1 {
    log.Fatal("missing file")
  }
  name := args[0]

  f, err := os.Open(name)
  if err != nil {
    log.Fatal(err)
  }
  defer f.Close()

  // If we call log.Fatal after this line,
  // f.Close will not be called.

  b, err := ioutil.ReadAll(f)
  if err != nil {
    log.Fatal(err)
  }

  // ...
}
package main

func main() {
  if err := run(); err != nil {
    log.Fatal(err)
  }
}

func run() error {
  args := os.Args[1:]
  if len(args) != 1 {
    return errors.New("missing file")
  }
  name := args[0]

  f, err := os.Open(name)
  if err != nil {
    return err
  }
  defer f.Close()

  b, err := ioutil.ReadAll(f)
  if err != nil {
    return err
  }

  // ...
}

Performance

Performance-specific guidelines apply only to the hot path.

Prefer strconv over fmt

When converting primitives to/from strings, strconv is faster than fmt.

BadGood
for i := 0; i < b.N; i++ {
  s := fmt.Sprint(rand.Int())
}
for i := 0; i < b.N; i++ {
  s := strconv.Itoa(rand.Int())
}
BenchmarkFmtSprint-4    143 ns/op    2 allocs/op
BenchmarkStrconv-4    64.2 ns/op    1 allocs/op

Style

Avoid overly long lines

Avoid lines of code that require readers to scroll horizontally or turn their heads too much.

We recommend a soft line length limit of 99 characters. Authors should aim to wrap lines before hitting this limit, but it is not a hard limit. Code is allowed to exceed this limit.

Be Consistent

Some of the guidelines outlined in this document can be evaluated objectively; others are situational, contextual, or subjective.

Above all else, be consistent.

Consistent code is easier to maintain, is easier to rationalize, requires less cognitive overhead, and is easier to migrate or update as new conventions emerge or classes of bugs are fixed.

Conversely, having multiple disparate or conflicting styles within a single codebase causes maintenance overhead, uncertainty, and cognitive dissonance, all of which can directly contribute to lower velocity, painful code reviews, and bugs.

When applying these guidelines to a codebase, it is recommended that changes are made at a package (or larger) level: application at a sub-package level violates the above concern by introducing multiple styles into the same code.

일관성을 가지라는 얘긴데 일관적인 코드는 유지보수가 쉽고, 쉽게 이해할 수 있고, 새로운 컨벤션이나 버그 수정에 있어서 쉽게 변경할 수 있다. 반대로, 여러 충돌하는 코드 스타일을 갖고있는 경우에 유지보수가 힘들어지고, 코드 리뷰 하기 힘들다.

Group Similar Declarations

Go supports grouping similar declarations.

BadGood
import "a"
import "b"
import (
  "a"
  "b"
)

This also applies to constants, variables, and type declarations.

BadGood
const a = 1
const b = 2



var a = 1
var b = 2



type Area float64
type Volume float64
const (
  a = 1
  b = 2
)

var (
  a = 1
  b = 2
)

type (
  Area float64
  Volume float64
)

Only group related declarations. Do not group declarations that are unrelated.

BadGood
type Operation int

const (
  Add Operation = iota + 1
  Subtract
  Multiply
  EnvVar = "MY_ENV"
)
type Operation int

const (
  Add Operation = iota + 1
  Subtract
  Multiply
)

const EnvVar = "MY_ENV"

Groups are not limited in where they can be used. For example, you can use them inside of functions.

BadGood
func f() string {
  red := color.New(0xff0000)
  green := color.New(0x00ff00)
  blue := color.New(0x0000ff)

  // ...
}
func f() string {
  var (
    red   = color.New(0xff0000)
    green = color.New(0x00ff00)
    blue  = color.New(0x0000ff)
  )

  // ...
}

Exception: Variable declarations, particularly inside functions, should be grouped together if declared adjacent to other variables. Do this for variables declared together even if they are unrelated.

BadGood
func (c *client) request() {
  caller := c.name
  format := "json"
  timeout := 5*time.Second
  var err error

  // ...
}
func (c *client) request() {
  var (
    caller  = c.name
    format  = "json"
    timeout = 5*time.Second
    err error
  )

  // ...
}

Import Group Ordering

There should be two import groups:

  • Standard library
  • Everything else

This is the grouping applied by goimports by default.

BadGood
import (
  "fmt"
  "os"
  "go.uber.org/atomic"
  "golang.org/x/sync/errgroup"
)
import (
  "fmt"
  "os"

  "go.uber.org/atomic"
  "golang.org/x/sync/errgroup"
)

Package Names

When naming packages, choose a name that is:

  • All lower-case. No capitals or underscores.
  • Does not need to be renamed using named imports at most call sites.
  • Short and succinct. Remember that the name is identified in full at every call site.
  • Not plural. For example, net/url, not net/urls.
  • Not "common", "util", "shared", or "lib". These are bad, uninformative names.

See also Package Names and Style guideline for Go packages.

Function Names

We follow the Go community's convention of using MixedCaps for function names. An exception is made for test functions, which may contain underscores for the purpose of grouping related test cases, e.g., TestMyFunction_WhatIsBeingTested.

Import Aliasing

Import aliasing must be used if the package name does not match the last element of the import path.

import (
  "net/http"

  client "example.com/client-go"
  trace "example.com/trace/v2"
)

In all other scenarios, import aliases should be avoided unless there is a direct conflict between imports.

BadGood
import (
  "fmt"
  "os"


  nettrace "golang.net/x/trace"
)
import (
  "fmt"
  "os"
  "runtime/trace"

  nettrace "golang.net/x/trace"
)

Function Grouping and Ordering

  • Functions should be sorted in rough call order.
  • Functions in a file should be grouped by receiver.

Therefore, exported functions should appear first in a file, after struct, const, var definitions.

A newXYZ()/NewXYZ() may appear after the type is defined, but before the rest of the methods on the receiver.

Since functions are grouped by receiver, plain utility functions should appear towards the end of the file.

BadGood
func (s *something) Cost() {
  return calcCost(s.weights)
}

type something struct{ ... }

func calcCost(n []int) int {...}

func (s *something) Stop() {...}

func newSomething() *something {
    return &something{}
}
type something struct{ ... }

func newSomething() *something {
    return &something{}
}

func (s *something) Cost() {
  return calcCost(s.weights)
}

func (s *something) Stop() {...}

func calcCost(n []int) int {...}

Reduce Nesting

Code should reduce nesting where possible by handling error cases/special conditions first and returning early or continuing the loop. Reduce the amount of code that is nested multiple levels.

BadGood
for _, v := range data {
  if v.F1 == 1 {
    v = process(v)
    if err := v.Call(); err == nil {
      v.Send()
    } else {
      return err
    }
  } else {
    log.Printf("Invalid v: %v", v)
  }
}
for _, v := range data {
  if v.F1 != 1 {
    log.Printf("Invalid v: %v", v)
    continue
  }

  v = process(v)
  if err := v.Call(); err != nil {
    return err
  }
  v.Send()
}

Unnecessary Else

If a variable is set in both branches of an if, it can be replaced with a single if.

BadGood
var a int
if b {
  a = 100
} else {
  a = 10
}
a := 10
if b {
  a = 100
}

Embedding in Structs

Embedded types should be at the top of the field list of a struct, and there must be an empty line separating embedded fields from regular fields.

BadGood
type Client struct {
  version int
  http.Client
}
type Client struct {
  http.Client

  version int
}

Embedding should provide tangible benefit, like adding or augmenting functionality in a semantically-appropriate way. It should do this with zero adverse user-facing effects (see also: Avoid Embedding Types in Public Structs).

Exception: Mutexes should not be embedded, even on unexported types. See also: Zero-value Mutexes are Valid.

Embedding should not:

  • Be purely cosmetic or convenience-oriented.
  • Make outer types more difficult to construct or use.
  • Affect outer types' zero values. If the outer type has a useful zero value, it should still have a useful zero value after embedding the inner type.
  • Expose unrelated functions or fields from the outer type as a side-effect of embedding the inner type.
  • Expose unexported types.
  • Affect outer types' copy semantics.
  • Change the outer type's API or type semantics.
  • Embed a non-canonical form of the inner type.
  • Expose implementation details of the outer type.
  • Allow users to observe or control type internals.
  • Change the general behavior of inner functions through wrapping in a way that would reasonably surprise users.

Simply put, embed consciously and intentionally. A good litmus test is, "would all of these exported inner methods/fields be added directly to the outer type"; if the answer is "some" or "no", don't embed the inner type - use a field instead.

BadGood
type A struct {
    // Bad: A.Lock() and A.Unlock() are
    //      now available, provide no
    //      functional benefit, and allow
    //      users to control details about
    //      the internals of A.
    sync.Mutex
}
type countingWriteCloser struct {
    // Good: Write() is provided at this
    //       outer layer for a specific
    //       purpose, and delegates work
    //       to the inner type's Write().
    io.WriteCloser

    count int
}

func (w *countingWriteCloser) Write(bs []byte) (int, error) {
    w.count += len(bs)
    return w.WriteCloser.Write(bs)
}
type Book struct {
    // Bad: pointer changes zero value usefulness
    io.ReadWriter

    // other fields
}

// later

var b Book
b.Read(...)  // panic: nil pointer
b.String()   // panic: nil pointer
b.Write(...) // panic: nil pointer
type Book struct {
    // Good: has useful zero value
    bytes.Buffer

    // other fields
}

// later

var b Book
b.Read(...)  // ok
b.String()   // ok
b.Write(...) // ok
type Client struct {
    sync.Mutex
    sync.WaitGroup
    bytes.Buffer
    url.URL
}
type Client struct {
    mtx sync.Mutex
    wg  sync.WaitGroup
    buf bytes.Buffer
    url url.URL
}

Local Variable Declarations

Short variable declarations (:=) should be used if a variable is being set to some value explicitly.

BadGood
var s = "foo"
s := "foo"

However, there are cases where the default value is clearer when the var keyword is used. Declaring Empty Slices, for example.

BadGood
func f(list []int) {
  filtered := []int{}
  for _, v := range list {
    if v > 10 {
      filtered = append(filtered, v)
    }
  }
}
func f(list []int) {
  var filtered []int
  for _, v := range list {
    if v > 10 {
      filtered = append(filtered, v)
    }
  }
}

nil is a valid slice

nil is a valid slice of length 0. This means that,

  • You should not return a slice of length zero explicitly. Return nil instead.

    BadGood
    if x == "" {
      return []int{}
    }
    if x == "" {
      return nil
    }
  • To check if a slice is empty, always use len(s) == 0. Do not check for nil.

    BadGood
    func isEmpty(s []string) bool {
      return s == nil
    }
    func isEmpty(s []string) bool {
      return len(s) == 0
    }

Remember that, while it is a valid slice, a nil slice is not equivalent to an allocated slice of length 0 - one is nil and the other is not - and the two may be treated differently in different situations (such as serialization).

Avoid Naked Parameters

Naked parameters in function calls can hurt readability. Add C-style comments (/* ... */) for parameter names when their meaning is not obvious.

BadGood
// func printInfo(name string, isLocal, done bool)

printInfo("foo", true, true)
// func printInfo(name string, isLocal, done bool)

printInfo("foo", true /* isLocal */, true /* done */)

Better yet, replace naked bool types with custom types for more readable and type-safe code. This allows more than just two states (true/false) for that parameter in the future.

type Region int

const (
  UnknownRegion Region = iota
  Local
)

type Status int

const (
  StatusReady Status = iota + 1
  StatusDone
  // Maybe we will have a StatusInProgress in the future.
)

func printInfo(name string, region Region, status Status)

Go supports raw string literals, which can span multiple lines and include quotes. Use these to avoid hand-escaped strings which are much harder to read.

BadGood
wantError := "unknown name:\"test\""
wantError := `unknown error:"test"`

Initializing Structs

Use Field Names to Initialize Structs

You should almost always specify field names when initializing structs. This is now enforced by go vet.

BadGood
k := User{"John", "Doe", true}
k := User{
    FirstName: "John",
    LastName: "Doe",
    Admin: true,
}

Exception: Field names may be omitted in test tables when there are 3 or fewer fields.

tests := []struct{
  op Operation
  want string
}{
  {Add, "add"},
  {Subtract, "subtract"},
}

Omit Zero Value Fields in Structs

When initializing structs with field names, omit fields that have zero values unless they provide meaningful context. Otherwise, let Go set these to zero values automatically.

BadGood
user := User{
  FirstName: "John",
  LastName: "Doe",
  MiddleName: "",
  Admin: false,
}
user := User{
  FirstName: "John",
  LastName: "Doe",
}

This helps reduce noise for readers by omitting values that are default in that context. Only meaningful values are specified.

Include zero values where field names provide meaningful context. For example, test cases in Test Tables can benefit from names of fields even when they are zero-valued.

tests := []struct{
  give string
  want int
}{
  {give: "0", want: 0},
  // ...
}

Use var for Zero Value Structs

When all the fields of a struct are omitted in a declaration, use the var form to declare the struct.

BadGood
user := User{}
var user User

This differentiates zero valued structs from those with non-zero fields similar to the distinction created for map initialization, and matches how we prefer to declare empty slices.

Initializing Struct References

Use &T{} instead of new(T) when initializing struct references so that it is consistent with the struct initialization.

BadGood
sval := T{Name: "foo"}

// inconsistent
sptr := new(T)
sptr.Name = "bar"
sval := T{Name: "foo"}

sptr := &T{Name: "bar"}

Prefer make(..) for empty maps, and maps populated programmatically. This makes map initialization visually distinct from declaration, and it makes it easy to add size hints later if available.

BadGood
var (
  // m1 is safe to read and write;
  // m2 will panic on writes.
  m1 = map[T1]T2{}
  m2 map[T1]T2
)
var (
  // m1 is safe to read and write;
  // m2 will panic on writes.
  m1 = make(map[T1]T2)
  m2 map[T1]T2
)

Declaration and initialization are visually similar.

Declaration and initialization are visually distinct.

Where possible, provide capacity hints when initializing maps with make(). See Specifying Map Capacity Hints for more information.

On the other hand, if the map holds a fixed list of elements, use map literals to initialize the map.

BadGood
m := make(map[T1]T2, 3)
m[k1] = v1
m[k2] = v2
m[k3] = v3
m := map[T1]T2{
  k1: v1,
  k2: v2,
  k3: v3,
}

The basic rule of thumb is to use map literals when adding a fixed set of elements at initialization time, otherwise use make (and specify a size hint if available).

Format Strings outside Printf

If you declare format strings for Printf-style functions outside a string literal, make them const values.

This helps go vet perform static analysis of the format string.

BadGood
msg := "unexpected values %v, %v\n"
fmt.Printf(msg, 1, 2)
const msg = "unexpected values %v, %v\n"
fmt.Printf(msg, 1, 2)

Naming Printf-style Functions

When you declare a Printf-style function, make sure that go vet can detect it and check the format string.

This means that you should use predefined Printf-style function names if possible. go vet will check these by default. See Printf family for more information.

If using the predefined names is not an option, end the name you choose with f: Wrapf, not Wrap. go vet can be asked to check specific Printf-style names but they must end with f.

$ go vet -printfuncs=wrapf,statusf

See also go vet: Printf family check.

Patterns

Test Tables

Use table-driven tests with subtests to avoid duplicating code when the core test logic is repetitive.

BadGood
// func TestSplitHostPort(t *testing.T)

host, port, err := net.SplitHostPort("192.0.2.0:8000")
require.NoError(t, err)
assert.Equal(t, "192.0.2.0", host)
assert.Equal(t, "8000", port)

host, port, err = net.SplitHostPort("192.0.2.0:http")
require.NoError(t, err)
assert.Equal(t, "192.0.2.0", host)
assert.Equal(t, "http", port)

host, port, err = net.SplitHostPort(":8000")
require.NoError(t, err)
assert.Equal(t, "", host)
assert.Equal(t, "8000", port)

host, port, err = net.SplitHostPort("1:8")
require.NoError(t, err)
assert.Equal(t, "1", host)
assert.Equal(t, "8", port)
// func TestSplitHostPort(t *testing.T)

tests := []struct{
  give     string
  wantHost string
  wantPort string
}{
  {
    give:     "192.0.2.0:8000",
    wantHost: "192.0.2.0",
    wantPort: "8000",
  },
  {
    give:     "192.0.2.0:http",
    wantHost: "192.0.2.0",
    wantPort: "http",
  },
  {
    give:     ":8000",
    wantHost: "",
    wantPort: "8000",
  },
  {
    give:     "1:8",
    wantHost: "1",
    wantPort: "8",
  },
}

for _, tt := range tests {
  t.Run(tt.give, func(t *testing.T) {
    host, port, err := net.SplitHostPort(tt.give)
    require.NoError(t, err)
    assert.Equal(t, tt.wantHost, host)
    assert.Equal(t, tt.wantPort, port)
  })
}

Test tables make it easier to add context to error messages, reduce duplicate logic, and add new test cases.

We follow the convention that the slice of structs is referred to as tests and each test case tt. Further, we encourage explicating the input and output values for each test case with give and want prefixes.

tests := []struct{
  give     string
  wantHost string
  wantPort string
}{
  // ...
}

for _, tt := range tests {
  // ...
}

Parallel tests, like some specialized loops (for example, those that spawn goroutines or capture references as part of the loop body), must take care to explicitly assign loop variables within the loop's scope to ensure that they hold the expected values.

tests := []struct{
  give string
  // ...
}{
  // ...
}

for _, tt := range tests {
  tt := tt // for t.Parallel
  t.Run(tt.give, func(t *testing.T) {
    t.Parallel()
    // ...
  })
}

In the example above, we must declare a tt variable scoped to the loop iteration because of the use of t.Parallel() below. If we do not do that, most or all tests will receive an unexpected value for tt, or a value that changes as they're running.

Functional options is a pattern in which you declare an opaque Option type that records information in some internal struct. You accept a variadic number of these options and act upon the full information recorded by the options on the internal struct.

Use this pattern for optional arguments in constructors and other public APIs that you foresee needing to expand, especially if you already have three or more arguments on those functions.

BadGood
// package db

func Open(
  addr string,
  cache bool,
  logger *zap.Logger
) (*Connection, error) {
  // ...
}
// package db

type Option interface {
  // ...
}

func WithCache(c bool) Option {
  // ...
}

func WithLogger(log *zap.Logger) Option {
  // ...
}

// Open creates a connection.
func Open(
  addr string,
  opts ...Option,
) (*Connection, error) {
  // ...
}

The cache and logger parameters must always be provided, even if the user wants to use the default.

db.Open(addr, db.DefaultCache, zap.NewNop())
db.Open(addr, db.DefaultCache, log)
db.Open(addr, false /* cache */, zap.NewNop())
db.Open(addr, false /* cache */, log)

Options are provided only if needed.

db.Open(addr)
db.Open(addr, db.WithLogger(log))
db.Open(addr, db.WithCache(false))
db.Open(
  addr,
  db.WithCache(false),
  db.WithLogger(log),
)

Our suggested way of implementing this pattern is with an Option interface that holds an unexported method, recording options on an unexported options struct.

type options struct {
  cache  bool
  logger *zap.Logger
}

type Option interface {
  apply(*options)
}

type cacheOption bool

func (c cacheOption) apply(opts *options) {
  opts.cache = bool(c)
}

func WithCache(c bool) Option {
  return cacheOption(c)
}

type loggerOption struct {
  Log *zap.Logger
}

func (l loggerOption) apply(opts *options) {
  opts.logger = l.Log
}

func WithLogger(log *zap.Logger) Option {
  return loggerOption{Log: log}
}

// Open creates a connection.
func Open(
  addr string,
  opts ...Option,
) (*Connection, error) {
  options := options{
    cache:  defaultCache,
    logger: zap.NewNop(),
  }

  for _, o := range opts {
    o.apply(&options)
  }

  // ...
}

Note that there's a method of implementing this pattern with closures but we believe that the pattern above provides more flexibility for authors and is easier to debug and test for users. In particular, it allows options to be compared against each other in tests and mocks, versus closures where this is impossible. Further, it lets options implement other interfaces, including fmt.Stringer which allows for user-readable string representations of the options.

See also,

Linting

More importantly than any "blessed" set of linters, lint consistently across a codebase.

We recommend using the following linters at a minimum, because we feel that they help to catch the most common issues and also establish a high bar for code quality without being unnecessarily prescriptive:

  • errcheck to ensure that errors are handled
  • goimports to format code and manage imports
  • golint to point out common style mistakes
  • govet to analyze code for common mistakes
  • staticcheck to do various static analysis checks

Lint Runners

We recommend golangci-lint as the go-to lint runner for Go code, largely due to its performance in larger codebases and ability to configure and use many canonical linters at once. This repo has an example .golangci.yml config file with recommended linters and settings.

golangci-lint has various linters available for use. The above linters are recommended as a base set, and we encourage teams to add any additional linters that make sense for their projects.

guide's People

Contributors

0x2d3c avatar abhinav avatar barrmelissa avatar beebeeep avatar damianskrzypczak avatar eundoosong avatar ferhatelmas avatar hothero avatar jpreese avatar knsh14 avatar kriskowal avatar lucassscaravelli avatar megidd avatar mway avatar nomis52 avatar pallat avatar prashantv avatar rabbbit avatar rafaveira3 avatar ribice avatar sashamelentyev avatar sau00 avatar seanknight avatar shirakiyo avatar symoon94 avatar tangoenskai avatar twilly avatar wuchihsu avatar xuanyang-cn avatar xxjwxc avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.