Giter Club home page Giter Club logo

retinexnet's Introduction

RetinexNet

This is a Tensorflow implement of RetinexNet

Deep Retinex Decomposition for Low-Light Enhancement. In BMVC'18 (Oral Presentation)
Chen Wei*, Wenjing Wang*, Wenhan Yang, Jiaying Liu. (* indicates equal contributions)

Paper, Project Page & Dataset

Requirements

  1. Python
  2. Tensorflow >= 1.5.0
  3. numpy, PIL

Testing Usage

To quickly test your own images with our model, you can just run through

python main.py 
    --use_gpu=1 \                           # use gpu or not
    --gpu_idx=0 \
    --gpu_mem=0.5 \                         # gpu memory usage
    --phase=test \
    --test_dir=/path/to/your/test/dir/ \
    --save_dir=/path/to/save/results/ \
    --decom=0                               # save only enhanced results or together with decomposition results

Or you can just see some demo cases by

python main.py --phase=test

, the results will be saved under ./test_results/.

Training Usage

First, download training data set from our project page. Save training pairs of our LOL dataset under ./data/our485/, and synthetic pairs under ./data/syn/. Then, just run

python main.py
    --use_gpu=1 \                           # use gpu or not
    --gpu_idx=0 \
    --gpu_mem=0.5 \                         # gpu memory usage
    --phase=train \
    --epoch=100 \                           # number of training epoches
    --batch_size=16 \
    --patch_size=48 \                       # size of training patches
    --start_lr=0.001 \                      # initial learning rate for adm
    --eval_every_epoch=20 \                 # evaluate and save checkpoints for every # epoches
    --checkpoint_dir=./checkpoint           # if it is not existed, automatically make dirs
    --sample_dir=./sample                   # dir for saving evaluation results during training

Tips:

  1. The model is quite small, so it will take just minutes to finish the training procedure if you are using GPU. For people who are using CPU, it is also affordable.
  2. The enhancement performance is highly dependent on training parameters. So if you change the default parameters, you might get some weird results.

Citation

@inproceedings{Chen2018Retinex,
 title={Deep Retinex Decomposition for Low-Light Enhancement},
 author={Chen Wei, Wenjing Wang, Wenhan Yang, Jiaying Liu},
 booktitle={British Machine Vision Conference},
 year={2018},
 organization={British Machine Vision Association}
}

retinexnet's People

Contributors

weichen582 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.