Giter Club home page Giter Club logo

operator's Introduction

Go Report Card GolangCI

Istio Operator

The Istio operator CLI is now suitable for developers to evaluate and experiment with. You can contribute by picking an unassigned open issue, creating a bug or feature request, or just coming to the weekly Environments Working Group meeting to share your ideas.

This document is an overview of how the operator works from a user perspective. For more details about the design and architecture and a code overview, see ARCHITECTURE.md

Introduction

This repo reorganizes the current Helm installation parameters into two groups:

Some parameters will temporarily exist in both APIs - for example, setting K8s resources currently can be done through either API above. However, the Istio community recommends using the first API as it is more consistent, is validated, and will naturally follow the graduation process for APIs while the same parameters in the configuration API are planned for deprecation.

This repo currently provides pre-configured Helm values sets for different scenarios as configuration profiles, which act as a starting point for an Istio install and can be customized by creating customization overlay files or passing parameters when calling Helm. Similarly, the operator API uses the same profiles (expressed internally through the new API), which can be selected as a starting point for the installation. For comparison, the following example shows the command needed to install Istio using the SDS configuration profile using Helm:

helm template install/kubernetes/helm/istio --name istio --namespace istio-system \
    --values install/kubernetes/helm/istio/values-istio-sds-auth.yaml | kubectl apply -f -

In the new API, the same profile would be selected through a CustomResource (CR):

# sds.yaml

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  profile: sds

See Select a specific configuration_profile for more information.

If you don't specify a configuration profile, Istio is installed using the default configuration profile. All profiles listed in istio.io are available by default, or profile: can point to a local file path to reference a custom profile base to use as a starting point for customization. See the API reference for details.

Developer quick start

The quick start describes how to install and use the operator mesh CLI command.

Building

If you're trying to do a local build that bypasses the build container, you'll need to to execute the following step one time.

GO111MODULE=on go get github.com/jteeuwen/go-bindata/[email protected]

To build the operator, simply:

git clone https://github.com/istio/operator.git
cd operator
make mesh

This will create a binary called mesh in ${GOPATH}/bin. Ensure this is in your PATH to run the examples below.

Flags

The mesh command supports the following flags:

  • logtostderr: log to console (by default logs go to ./mesh-cli.log).
  • dry-run: console output only, nothing applied to cluster or written to files.
  • verbose: display entire manifest contents and other debug info (default is false).

Quick tour of CLI commands

Basic default manifest

The following command generates a manifest with the compiled in default profile and charts:

mesh manifest generate

You can see these sources for the compiled in profiles in the repo under data/profiles. Charts/profiles will be released separately and the by default the mesh command will point to a version of the released charts.

Output to dirs

The output of the manifest is concatenated into a single file. To generate a directory hierarchy with subdirectory levels representing a child dependency, use the following command:

mesh manifest generate -o istio_manifests

Use depth first search to traverse the created directory hierarchy when applying your YAML files. This is needed for correct sequencing of dependencies. Child manifest directories must wait for their parent directory to be fully applied, but not their sibling manifest directories.

Just apply it for me

The following command generates the manifests and applies them in the correct dependency order, waiting for the dependencies to have the needed CRDs available:

mesh manifest apply

Review the values of a configuration profile

The following commands show the values of a configuration profile:

# show available profiles
mesh profile list

# show the values in demo profile
mesh profile dump demo

# show the values after a customization file is applied
mesh profile dump -f samples/policy-off.yaml

# show differences between the default and demo profiles
mesh profile dump default > 1.yaml
mesh profile dump demo > 2.yaml
mesh profile diff 1.yaml 2.yaml

# show the differences in the generated manifests between the default profile and a customized install
mesh manifest generate > 1.yaml
mesh manifest generate -f samples/pilot-k8s.yaml > 2.yaml
mesh manifest diff 1.yam1 2.yaml

The profile dump sub-command supports a couple of useful flags:

  • config-path: select the root for the configuration subtree you want to see e.g. just show Pilot:
mesh profile dump --config-path trafficManagement.components.pilot
  • set: set a value in the configuration before dumping the resulting profile e.g. show the minimal profile:
mesh profile dump --set profile=minimal

Select a specific configuration profile

The simplest customization is to select a profile different to default e.g. sds. See samples/sds.yaml:

# sds-install.yaml
apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  profile: sds

Use the Istio operator mesh binary to apply the new configuration profile:

mesh manifest generate -f samples/sds.yaml

After running the command, the Helm charts are rendered using data/profiles/sds.yaml.

Install from file path

The compiled in charts and profiles are used by default, but you can specify a file path, for example:

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  profile: /usr/home/bob/go/src/github.com/ostromart/istio-installer/data/profiles/default.yaml
  installPackagePath: /usr/home/bob/go/src/github.com/ostromart/istio-installer/data/charts/

You can mix and match these approaches. For example, you can use a compiled-in configuration profile with charts in your local file system.

Migration from values.yaml

The following command takes helm values.yaml files and output the new IstioControlPlaneSpec:

mesh manifest migrate /usr/home/bob/go/src/istio.io/installer/istio-control/istio-discovery/values.yaml

If a directory is specified, all files called "values.yaml" under the directory will be converted into a single combined IstioControlPlaneSpec:

mesh manifest migrate /usr/home/bob/go/src/istio.io/installer/istio-control

If no file is specified, the IstioControlPlane CR in the kube config cluster is used as an input:

mesh manifest migrate

Check diffs of manifests

The following command takes two manifests and output the differences in a readable way. It can be used to compare between the manifests generated by operator API and helm directly:

mesh manifest diff ./out/helm-template/manifest.yaml ./out/mesh-manifest/manifest.yaml

New API customization

The new platform level installation API defines install time parameters like feature and component enablement and namespace, and K8s settings like resources, HPA spec etc. in a structured way. The simplest customization is to turn features and components on and off. For example, to turn off all policy (samples/sds-policy-off.yaml):

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  profile: sds
  policy:
    enabled: false

The operator validates the configuration and automatically detects syntax errors. Helm lacks this capability. If you are using Helm values that are incompatible, the schema validation used in the operator may reject input that is valid for Helm. Another customization is to define custom namespaces for features (samples/trafficManagement-namespace.yaml):

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  trafficManagement:
    components:
      namespace: istio-control-custom

The traffic management feature comprises Pilot and Proxy components. Each of these components has K8s settings, and these can be overridden from the defaults using official K8s APIs rather than Istio defined schemas (samples/pilot-k8s.yaml):

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  trafficManagement:
    components:
      pilot:
        k8s:
          resources:
            requests:
              cpu: 1000m # override from default 500m
              memory: 4096Mi # ... default 2048Mi
          hpaSpec:
            maxReplicas: 10 # ... default 5
            minReplicas: 2  # ... default 1

The K8s settings are defined in detail in the operator API. The settings are the same for all components, so a user can configure pilot K8s settings in exactly the same, consistent way as galley settings. Supported K8s settings currently include:

All of these K8s settings use the K8s API definitions, so K8s documentation can be used for reference. All K8s overlay values are also validated in the operator.

Customizing the old values.yaml API

The new platform install API above deals with K8s level settings. The remaining values.yaml parameters deal with Istio control plane operation rather than installation. For the time being, the operator just passes these through to the Helm charts unmodified (but validated through a schema). Values.yaml settings are overridden the same way as the new API, though a customized CR overlaid over default values for the selected profile. Here's an example of overriding some global level default values (samples/values-global.yaml):

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  profile: sds
  values:
    global:
      logging:
        level: "default:warning" # override from info

Values overrides can also be specified for a particular component (samples/values-pilot.yaml):

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  values:
    mixer:
      telemetry:
        loadshedding:
          latencyThreshold: 200ms  

Advanced K8s resource overlays

Advanced users may occasionally have the need to customize parameters (like container command line flags) which are not exposed through either of the installation or configuration APIs described in this document. For such cases, it's possible to overlay the generated K8s resources before they are applied with user-defined overlays. For example, to override some container level values in the Pilot container (samples/pilot-advanced-override.yaml):

apiVersion: install.istio.io/v1alpha2
kind: IstioControlPlane
spec:
  trafficManagement:
    enabled: true
    components:
      proxy:
        enabled: false
      pilot:
        k8s:
          overlays:
          - kind: Deployment
            name: istio-pilot
            patches:
            - path: spec.template.spec.containers.[name:discovery].args.[30m]
              value: "60m" # OVERRIDDEN
            - path: spec.template.spec.containers.[name:discovery].ports.[containerPort:8080].containerPort
              value: 8090 # OVERRIDDEN
          - kind: Service
            name: istio-pilot
            patches:
            - path: spec.ports.[name:grpc-xds].port
              value: 15099 # OVERRIDDEN

The user-defined overlay uses a path spec that includes the ability to select list items by key. In the example above, the container with the key-value "name: discovery" is selected from the list of containers, and the command line parameter with value "30m" is selected to be modified. The advanced overlay capability is described in more detail in the spec.

Architecture

See ARCHITECTURE.md

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.