Giter Club home page Giter Club logo

aprendizaje-estadistico's Introduction

Aprendizaje Estadístico

Notas para el curso de licenciatura de Aprendizaje Estadístico (EST-25134).

Requisitos de ambiente:

Preparando el ambiente de trabajo:

Para garantizar que tengas todos los paquetes necesarios utiliza el comando siguiente una vez que hayas abierto el repositorio como un proyecto en Rstudio:

renv:restore()

NOTA: esta última instrucción puede tarda alrededor de una hora pues tiene que instalar y compilar la mayoría de los paquetes que se utilizan para el material de apoyo.

Ambiente dockerizado

Parte del curso utiliza material de apoyo que se encuentra en codigo/ de este mismo repositorio.

Por cuestiones de reproducibilidad, didáctica, y para poder practicar el uso de Docker, se ha creado un imagen con lo necesario para poder compilar notas.1

Para poder utilizar la imagen primero asegurate de tener instalado en tu computador Docker o DockerHub y en terminal (la documentación de Docker debería de poder guiarte en utilizar la interfaz gráfica con el mismo propósito) ejecuta lo siguiente:

docker pull agarbuno/env-statistical

que es una imagen configurada con este Dockerfile.

Para poder iniciar la aplicación ejecuta en línea de comandos, o a través de un shell script, lo siguiente:

RENV_PATHS_CACHE_CONTAINER=/home/rstudio/.local/share/renv/cache/
RENV_PATHS_CACHE_HOST={ruta en tu máquina donde guardarás el cache de renv}/renv/cache
PATH_GIT_CURSOS={ruta en tu máquina donde tienes clonado el repo o tu fork de la clase}

docker run -p 8787:8787 \
    -e PASSWORD={password que tu escojas} \
    -e "RENV_PATHS_CACHE=${RENV_PATHS_CACHE_CONTAINER}" \
    -e "RENV_PATHS_ROOT=${RENV_PATHS_CACHE_CONTAINER}" \
    -v "${RENV_PATHS_CACHE_HOST}:${RENV_PATHS_CACHE_CONTAINER}" \
    -m 8g \
    -v "${PATH_GIT_CURSOS}:/home/rstudio/cursos" \
    agarbuno/env-bayesiana

Si la aplicación fue exitosa la podrás ver corriendo en el Dashboard de Docker

o en terminal verás el siguiente mensaje

    [s6-init] making user provided files available at /var/run/s6/etc...exited 0.
    [s6-init] ensuring user provided files have correct perms...exited 0.
    [fix-attrs.d] applying ownership & permissions fixes...
    [fix-attrs.d] done.
    [cont-init.d] executing container initialization scripts...
    [cont-init.d] userconf: executing...
    [cont-init.d] userconf: exited 0.
    [cont-init.d] done.
    [services.d] starting services
    [services.d] done.

Mejor aún, podrás accesar al servidor de Rstudio en tu navegador en la ruta: localhost:8787/. Para esto las credenciales que necesitarás serán el usuario rstudio y la contraseña que estableciste arriba.

Si has seguido las instrucciones como vienen en este documento. El repositorio de estas notas lo veras en la sesión del Rstudio en la ruta /home/rstudio/cursos/. Todos los cambios que hagas en esta ruta se verán reflejados en la ruta de tu máquina (HOST) que habíamos definido en la variable de sistema PATH_GIT_CURSOS. De esta forma tendrás un ambiente de trabajo homologado cuyo principio es:

  1. El sistema operativo y el ambiente de trabajo se encuentra en una máquina virtual base (la imagen de Docker).
  2. Los archivos y tu registro de trabajo (cambios, nuevos scripts, etc.) los tienes guardados en fisico en tu máquina (HOST).

NOTA: si decides utilizar el ambiente dockerizado se sugiere cambiar a otra rama dentro del repositorio pues la dupla Docker y renv marcarán el origen de los paquetes como RSPM en lugar de CRAN. Puedes usar la siguiente instrucción, por ejemplo, en la línea de comandos:

git checkout -b docker-run

Para mantener esta rama en particular al corriente con el desarrollo del material deberás hacer un merge de la rama principal a la rama de Docker:

git checkout -b docker-run
git fetch 
git merge origin/master

Por último podría ser el caso que necesites resolver conflictos en el merge con la rama master. Para esto puedes utilizar un editor de texto (como Atom)o el mismo ambiente de Rstudio.

Observaciones:

1El formato de las notas que se puede reproducir con esto es bookdown::gitbook. La compatibilidad con bookdown::pdf_book aun no es reproducible.

aprendizaje-estadistico's People

Contributors

agarbuno avatar spartandone avatar tonantzin-real avatar celj avatar legorretta avatar manuelgg97 avatar jpsanchezizq avatar sruizvelf avatar paucarretero avatar payro13 avatar santiagopayro avatar jbsolorzano avatar pablomtzm9 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.