Giter Club home page Giter Club logo

torchbearer's Introduction

torchbearer

PyPI version Build Status codecov Documentation Status Codacy Badge

torchbearer: A model training library for researchers using PyTorch

Contents

Torchbearer is a PyTorch model training library designed by researchers, for researchers. Specifically, if you occasionally want to perform advanced custom operations but generally don't want to write hundreds of lines of untested code then this is the library for you. Our design decisions are geared towards flexibility and customisability whilst trying to maintain the simplest possible API.

  • Keras-like training API using calls to fit(...) / fit_generator(...)
  • Sophisticated metric API which supports calculation data (e.g. accuracy) flowing to multiple aggregators which can calculate running values (e.g. mean) and values for the epoch (e.g. std, mean, area under curve)
  • Simple callback API with a persistent model state that supports adding to the loss or accessing the metric values
  • A host of callbacks included from the start that enable: tensorboard logging (for metrics, images and data), model checkpointing, weight decay, learning rate schedulers, gradient clipping and more
  • Decorator APIs for metrics and callbacks that allow for simple construction of callbacks and metrics
  • An example library (still under construction) with a set of demos showing how complex models (such as GANs and VAEs) can be implemented easily with torchbearer
  • Fully tested; as researchers we want to trust that our metrics and callbacks work properly, we have therefore tested everything thouroughly for peace of mind

The easiest way to install torchbearer is with pip:

pip install torchbearer

  • Define your data and model as usual (here we use a simple CNN on Cifar10). Note that we use torchbearers DatasetValidationSplitter here to create a validation set (10% of the data). This is essential to avoid over-fitting to your test data:
BATCH_SIZE = 128

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])

dataset = torchvision.datasets.CIFAR10(root='./data/cifar', train=True, download=True,
                                        transform=transforms.Compose([transforms.ToTensor(), normalize]))
splitter = DatasetValidationSplitter(len(dataset), 0.1)
trainset = splitter.get_train_dataset(dataset)
valset = splitter.get_val_dataset(dataset)

traingen = torch.utils.data.DataLoader(trainset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)
valgen = torch.utils.data.DataLoader(valset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=True, num_workers=10)


testset = torchvision.datasets.CIFAR10(root='./data/cifar', train=False, download=True,
                                       transform=transforms.Compose([transforms.ToTensor(), normalize]))
testgen = torch.utils.data.DataLoader(testset, pin_memory=True, batch_size=BATCH_SIZE, shuffle=False, num_workers=10)


class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.convs = nn.Sequential(
            nn.Conv2d(3, 16, stride=2, kernel_size=3),
            nn.BatchNorm2d(16),
            nn.ReLU(),
            nn.Conv2d(16, 32, stride=2, kernel_size=3),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.Conv2d(32, 64, stride=2, kernel_size=3),
            nn.BatchNorm2d(64),
            nn.ReLU()
        )

        self.classifier = nn.Linear(576, 10)

    def forward(self, x):
        x = self.convs(x)
        x = x.view(-1, 576)
        return self.classifier(x)


model = SimpleModel()
  • Now that we have a model we can train it simply by wrapping it in a torchbearer Model instance:
optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.001)
loss = nn.CrossEntropyLoss()

from torchbearer import Model

torchbearer_model = Model(model, optimizer, loss, metrics=['acc', 'loss']).to('cuda')
torchbearer_model.fit_generator(traingen, epochs=10, validation_generator=valgen)

torchbearer_model.evaluate_generator(testgen)
  • Running that code gives output using Tqdm and providing running accuracies and losses during the training phase:
0/10(t): 100%|██████████| 352/352 [00:01<00:00, 233.36it/s, running_acc=0.536, running_loss=1.32, acc=0.459, acc_std=0.498, loss=1.52, loss_std=0.239]
0/10(v): 100%|██████████| 40/40 [00:00<00:00, 239.40it/s, val_acc=0.536, val_acc_std=0.499, val_loss=1.29, val_loss_std=0.0731]
.
.
.
9/10(t): 100%|██████████| 352/352 [00:01<00:00, 215.76it/s, running_acc=0.741, running_loss=0.735, acc=0.754, acc_std=0.431, loss=0.703, loss_std=0.0897]
9/10(v): 100%|██████████| 40/40 [00:00<00:00, 222.72it/s, val_acc=0.68, val_acc_std=0.466, val_loss=0.948, val_loss_std=0.181]
0/1(e): 100%|██████████| 79/79 [00:00<00:00, 268.70it/s, val_acc=0.678, val_acc_std=0.467, val_loss=0.925, val_loss_std=0.109]

Our documentation containing the API reference, examples and some notes can be found at torchbearer.readthedocs.io

Torchbearer isn't the only library for training PyTorch models. Here are a few others that might better suit your needs (this is by no means a complete list, see the awesome pytorch list for more):

  • skorch, model wrapper that enables use with scikit-learn - crossval etc. can be very useful
  • PyToune, simple Keras style API
  • ignite, advanced model training from the makers of PyTorch, can need a lot of code for advanced functions (e.g. Tensorboard)
  • TorchNetTwo (TNT), can be complex to use but well established, somewhat replaced by ignite
  • Inferno, training utilities and convenience classes for PyTorch

torchbearer's People

Contributors

ethanwharris avatar mattpainter01 avatar vfdev-5 avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.