Giter Club home page Giter Club logo

autodiff's Introduction

Documentation

Autodiff is a numerical optimization and linear algebra library for the Go / Golang programming language. It implements basic automatic differentation for many mathematical routines. The documentation of this package can be found here.

Scalars

Autodiff has two different scalar types. The Real type allows to store first and second derivatives for the current value, whereas the BareReal type is a simple float64 which cannot store any information other than its value. Every scalar supports the following set of functions:

Function Description
Min Minimum
Max Maximum
Abs Absolute value
Sign Sign
Neg Negation
Add Addition
Sub Substraction
Mul Multiplication
Div Division
Pow Power
Sqrt Square root
Exp Exponential function
Log Logarithm
Log1p Logarithm of 1+x
Log1pExp Logarithm of 1+Exp(x)
Logistic Standard logistic function
Erf Error function
Erfc Complementary error function
LogErfc Log complementary error function
Sigmoid Numerically stable sigmoid function
Sin Sine
Sinh Hyperbolic sine
Cos Cosine
Cosh Hyperbolic cosine
Tan Tangent
Tanh Hyperbolic tangent
LogAdd Addition on log scale
LogSub Substraction on log scale
SmoothMax Differentiable maximum
LogSmoothMax Differentiable maximum on log scale
Gamma Gamma function
Lgamma Log gamma function
Mlgamma Multivariate log gamma function
GammaP Lower incomplete gamma function
BesselI Modified Bessel function of the first kind
LogBesselI Log of the Modified Bessel function of the first kind

Vectors and Matrices

Autodiff supports vectors and matrices including basic linear algebra operations. Vectors support the following linear algebra operations:

Function Description
VaddV Element-wise addition
VsubV Element-wise substraction
VmulV Element-wise multiplication
VdivV Element-wise division
VaddS Addition of a scalar
VsubS Substraction of a scalar
VmulS Multiplication with a scalar
VdivS Division by a scalar
VdotV Dot product

Matrices support the following linear algebra operations:

Function Description
MaddM Element-wise addition
MsubM Element-wise substraction
MmulM Element-wise multiplication
MdivM Element-wise division
MaddS Addition of a scalar
MsubS Substraction of a scalar
MmulS Multiplication with a scalar
MdivS Division by a scalar
MdotM Matrix product
Outer Outer product

Algorithms

The algorithms package contains more complex linear algebra and optimization routines:

Package Description
bfgs Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
blahut Blahut algorithm (channel capacity)
cholesky Cholesky and LDL factorization
determinant Matrix determinants
eigensystem Compute Eigenvalues and Eigenvectors
gaussJordan Gauss-Jordan algorithm
gradientDescent Vanilla gradient desent algorithm
gramSchmidt Gram-Schmidt algorithm
hessenbergReduction Matrix Hessenberg reduction
lineSearch Line-search (satisfying the Wolfe conditions)
matrixInverse Matrix inverse
msqrt Matrix square root
msqrtInv Inverse matrix square root
newton Newton's method (root finding and optimization)
qrAlgorithm QR-Algorithm for computing Schur decompositions
rprop Resilient backpropagation
svd Singular Value Decomposition (SVD)
saga SAGA stochastic average gradient descent method

Basic usage

Import the autodiff library with

  import . "github.com/pbenner/autodiff"

A scalar holding the value 1.0 can be defined in several ways, i.e.

  a := NewScalar(RealType, 1.0)
  b := NewReal(1.0)
  c := NewBareReal(1.0)

a and b are both Reals, however a has type Scalar whereas b has type *Real which implements a Scalar. Variable c is of type *BareReal which cannot carry any derivatives. Basic operations such as additions are defined on all Scalars, i.e.

  a.Add(a, b)

which stores the result of adding a and b in a. If autodiff/simple is imported, one may also use

  d := Add(a, b)

where the result is stored in a new variable d. The ConstReal type allows to define real constants without allocation of additional memory. For instance

  a.Add(a, ConstReal(1.0))

adds a constant value to a where a type cast is used to define the constant 1.0.

To differentiate a function

  f := func(x, y Scalar) Scalar {
    return Add(Mul(x, Pow(y, NewReal(3))), NewReal(4))
  }

first two reals are defined

  x := NewReal(2)
  y := NewReal(4)

that store the value at which the derivative of f should be evaluated. Afterwards, x and y must be defined as variables with

  Variables(2, x, y)

where the first argument says that derivatives up to second order should be computed. After evaluating f, i.e.

  z := f(x, y)

the function value at (x,y) = (2, 4) can be retrieved with z.GetValue(). The first and second partial derivatives can be accessed with z.GetDerivative(i) and z.GetHessian(i, j), where the arguments specify the index of the variable. For instance, the derivative of f with respect to x is returned by z.GetDerivative(0), whereas the derivative with respect to y by z.GetDerivative(1).

Basic linear algebra

Vectors and matrices can be created with

  v := NewVector(RealType, []float64{1,2})
  m := NewMatrix(RealType, 2, 2, []float64{1,2,3,4})

where v has length 2 and m is a 2x2 matrix. With

  v := NullVector(RealType, 2)
  m := NullMatrix(RealType, 2, 2)

all values are initially set to zero. Vector and matrix elements can be accessed with the At method, which returns a reference to the Scalar, i.e.

  m.At(1,1).Add(v.At(0), v.At(1))

adds the first two values in v and stores the result in the lower right element of the matrix m. Autodiff supports basic linear algebra operations, for instance, the vector matrix product can be computed with

  w := NullVector(RealType, 2)
  w.MdotV(m, v)

where the result is stored in w. Other operations, such as computing the eigenvalues and eigenvectors of a matrix, require importing the respective package from the algorithm library, i.e.

  import "github.com/pbenner/autodiff/algorithm/eigensystem"

  lambda, _, _ := eigensystem.Run(m)

Examples

Gradient descent

Compare vanilla gradient descent with resilient backpropagation

  import . "github.com/pbenner/autodiff"
  import   "github.com/pbenner/autodiff/algorithm/gradientDescent"
  import   "github.com/pbenner/autodiff/algorithm/rprop"
  import . "github.com/pbenner/autodiff/simple"

  f := func(x Vector) Scalar {
    // x^4 - 3x^3 + 2
    return Add(Sub(Pow(x.At(0), NewReal(4)), Mul(NewReal(3), Pow(x.At(0), NewReal(3)))), NewReal(2))
  }
  x0 := NewVector(RealType, []float64{8})
  // vanilla gradient descent
  xn1, _ := gradientDescent.Run(f, x0, 0.0001, gradientDescent.Epsilon{1e-8})
  // resilient backpropagation
  xn2, _ := rprop.Run(f, x0, 0.0001, 0.4, rprop.Epsilon{1e-8})

Gradient descent

Matrix inversion

Compute the inverse r of a matrix m by minimizing the Frobenius norm ||mb - I||

  import . "github.com/pbenner/autodiff"
  import   "github.com/pbenner/autodiff/algorithm/rprop"
  import . "github.com/pbenner/autodiff/simple"

  m := NewMatrix(RealType, 2, 2, []float64{1,2,3,4})

  I := IdentityMatrix(RealType, 2)
  r := m.Clone()
  // objective function
  f := func(x Vector) Scalar {
    r.SetValues(x)
    s := Mnorm(MsubM(MmulM(m, r), I))
    return s
  }
  x, _ := rprop.Run(f, r.GetValues(), 0.01, 0.1, rprop.Epsilon{1e-12})
  r.SetValues(x)

Newton's method

Find the root of a function f with initial value x0 = (1,1)

  import . "github.com/pbenner/autodiff"
  import   "github.com/pbenner/autodiff/algorithm/newton"
  import . "github.com/pbenner/autodiff/simple"

  f := func(x Vector) Vector {
    y := NilVector(2)
    // y1 = x1^2 + x2^2 - 6
    // y2 = x1^3 - x2^2
    y.At(0).Sub(Add(Pow(x.At(0), NewReal(2)), Pow(x.At(1), NewReal(2))), NewReal(6))
    y.At(1).Sub(Pow(x.At(0), NewReal(3)), Pow(x.At(1), NewReal(2)))

    return y
  }

  x0    := NewVector(RealType, []float64{1,1})
  xn, _ := newton.RunRoot(f, x0, newton.Epsilon{1e-8})

Minimize Rosenbrock's function

Compare Newton's method, BFGS and Rprop for minimizing Rosenbrock's function

  import . "github.com/pbenner/autodiff"
  import   "github.com/pbenner/autodiff/algorithm/rprop"
  import   "github.com/pbenner/autodiff/algorithm/bfgs"
  import   "github.com/pbenner/autodiff/algorithm/newton"
  import . "github.com/pbenner/autodiff/simple"

  f := func(x Vector) (Scalar, error) {
     // f(x1, x2) = (a - x1)^2 + b(x2 - x1^2)^2
     // a = 1
     // b = 100
     // minimum: (x1,x2) = (a, a^2)
     a := NewReal(  1.0)
     b := NewReal(100.0)
     s := Pow(Sub(a, x.At(0)), NewReal(2.0))
     t := Mul(b, Pow(Sub(x.At(1), Mul(x.At(0), x.At(0))), NewReal(2.0)))
     return Add(s, t), nil
   }
  hook_bfgs := func(x, gradient Vector, y Scalar) bool {
    fmt.Println("x       :", x)
    fmt.Println("gradient:", gradient)
    fmt.Println("y       :", y)
    fmt.Println()
    return false
  }
  hook_rprop := func(gradient, step []float64, x Vector, y Scalar) bool {
    fmt.Println("x       :", x)
    fmt.Println("gradient:", gradient)
    fmt.Println("y       :", y)
    fmt.Println()
    return false
  }
  hook_newton := func(x, gradient Vector, hessian Matrix, y Scalar) bool {
    fmt.Println("x       :", x)
    fmt.Println("gradient:", gradient)
    fmt.Println("y       :", y)
    fmt.Println()
    return false
  }

  x0 := NewVector(RealType, []float64{-0.5, 2})

  rprop.Run(f, x0, 0.05, []float64{1.2, 0.8},
    rprop.Hook{hook_rprop},
    rprop.Epsilon{1e-10})

  bfgs.Run(f, x0,
    bfgs.Hook{hook_bfgs},
    bfgs.Epsilon{1e-10})

  newton.RunMin(f, x0,
    newton.HookMin{hook_newton},
    newton.Epsilon{1e-8},
    newton.HessianModification{"LDL"})

Gradient descent

Constrained optimization

Maximize the function f(x, y) = x + y subject to x^2 + y^2 = 1 by finding the critical point of the corresponding Lagrangian

  import . "github.com/pbenner/autodiff"
  import   "github.com/pbenner/autodiff/algorithm/newton"
  import . "github.com/pbenner/autodiff/simple"

  // define the Lagrangian
  f := func(x Vector) (Scalar, error) {
    // x + y + lambda(x^2 + y^2 - 1)
    y := Add(Add(x.At(0), x.At(1)), Mul(x.At(2), Sub(Add(Mul(x.At(0), x.At(0)), Mul(x.At(1), x.At(1))), NewReal(1))))

    return y, nil
  }
  // initial value
  x0    := NewVector(RealType, []float64{3,  5, 1})
  // run Newton's method
  xn, _ := newton.RunCrit(
      f, x0,
      newton.Epsilon{1e-8})

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.