Giter Club home page Giter Club logo

desolvediffeq.jl's Introduction

deSolveDiffEq.jl

Join the chat at https://gitter.im/JuliaDiffEq/Lobby Build Status

deSolveDiffEq.jl is a common interface binding for the R deSolve package of ordinary differential equation solvers. It uses the RCall.jl interop in order to send the differential equation over to R and solve it.

Note that this package isn't for production use and is mostly just for benchmarking and helping new users migrate models over to Julia. For more efficient solvers, see the DifferentialEquations.jl documentation.

Installation

To install deSolveDiffEq.jl, use the following:

Pkg.clone("https://github.com/JuliaDiffEq/deSolveDiffEq.jl")

Note that this requires that deSolve is already installed from R and that RCall.jl is able to appropriately build.

Using deSolveDiffEq.jl

deSolveDiffEq.jl is simply a solver on the DiffEq common interface, so for details see the DifferentialEquations.jl documentation. The available algorithms are:

deSolveDiffEq.lsoda()
deSolveDiffEq.lsode()
deSolveDiffEq.lsodes()
deSolveDiffEq.lsodar()
deSolveDiffEq.vode()
deSolveDiffEq.daspk()
deSolveDiffEq.euler()
deSolveDiffEq.rk4()
deSolveDiffEq.ode23()
deSolveDiffEq.ode45()
deSolveDiffEq.radau()
deSolveDiffEq.bdf()
deSolveDiffEq.bdf_d()
deSolveDiffEq.adams()
deSolveDiffEq.impAdams()
deSolveDiffEq.impAdams_d()

Example

using deSolveDiffEq

function lorenz(u,p,t)
 du1 = 10.0(u[2]-u[1])
 du2 = u[1]*(28.0-u[3]) - u[2]
 du3 = u[1]*u[2] - (8/3)*u[3]
 [du1, du2, du3]
end
tspan = (0.0,10.0)
u0 = [1.0,0.0,0.0]
prob = ODEProblem(lorenz,u0,tspan)
sol = solve(prob,deSolveDiffEq.lsoda())

Measuring Overhead

deSolveDiffEq.jl has about a 2x-3x overhead over using deSolve in R directly. To see this, we can time the main example from the website

library(deSolve)

Lorenz <- function(t, state, parameters) {
  with(as.list(c(state, parameters)), {
    dX <-  a * X + Y * Z
    dY <-  b * (Y - Z)
    dZ <- -X * Y + c * Y - Z
    list(c(dX, dY, dZ))
  })
}

parameters <- c(a = -8/3, b = -10, c = 28)
state      <- c(X = 1, Y = 1, Z = 1)
times      <- seq(0, 100, by = 0.01)

system.time(out <- ode(y = state, times = times, func = Lorenz, parms = parameters))

which outputs

RObject{RealSxp}
   user  system elapsed
   0.33    0.00    0.33

vs the deSolveDiffEq.jl approach:

using deSolveDiffEq, BenchmarkTools

function lorenz(u,p,t)
  du1 = 10.0(u[2]-u[1])
  du2 = u[1]*(28.0-u[3]) - u[2]
  du3 = u[1]*u[2] - (8/3)*u[3]
  [du1, du2, du3]
end
u0 = [1.0;0.0;0.0]
tspan = (0.0,100.0)
prob = ODEProblem(lorenz,u0,tspan)
@btime sol = solve(prob,deSolveDiffEq.lsoda()) # 812.972 ms (2152395 allocations: 67.85 MiB)

Implementation Note

Note that the implementation requires that the function returns a list, so an R list is generated on the output of each user function call. This means this is more comparable to the timings of the standard deSolve usage, and not the C/Fortran function version. We are working to see if that interface can be directly accessible by Julia functions to check the "expert's version" call overhead

Benchmarks

The following benchmarks demonstrate a 1000x performance advantage for the pure-Julia methods over the deSolve ODE solvers across a range of stiff and non-stiff ODEs*. These were ran with Julia 1.2, MATLAB 2019B, deSolve 1.2.5, and SciPy 1.3.1 after verifying negligible overhead on interop.

* There is a caveat: this is comparing the "R form" code vs the pure Julia code. If one directly writes C/Fortran files and compiles that using the compiled code interface, the deSolve LSODA matches the performance of LSODA.jl and other pure C/Fortran calls. Thus this only applied to the standard deSolve usage.

Non-Stiff Problem 1: Lotka-Volterra

f = @ode_def_bare LotkaVolterra begin
  dx = a*x - b*x*y
  dy = -c*y + d*x*y
end a b c d
p = [1.5,1,3,1]
tspan = (0.0,10.0)
u0 = [1.0,1.0]
prob = ODEProblem(f,u0,tspan,p)
sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14)
test_sol = TestSolution(sol)

setups = [Dict(:alg=>DP5())
          Dict(:alg=>dopri5())
          Dict(:alg=>Tsit5())
          Dict(:alg=>Vern7())
          Dict(:alg=>MATLABDiffEq.ode45())
          Dict(:alg=>MATLABDiffEq.ode113())
          Dict(:alg=>SciPyDiffEq.RK45())
          Dict(:alg=>SciPyDiffEq.LSODA())
          Dict(:alg=>SciPyDiffEq.odeint())
          Dict(:alg=>deSolveDiffEq.lsoda())
          Dict(:alg=>deSolveDiffEq.ode45())
          Dict(:alg=>CVODE_Adams())
  ]

names = [
  "Julia: DP5"
  "Hairer: dopri5"
  "Julia: Tsit5"
  "Julia: Vern7"
  "MATLAB: ode45"
  "MATLAB: ode113"
  "SciPy: RK45"
  "SciPy: LSODA"
  "SciPy: odeint"
  "deSolve: lsoda"
  "deSolve: ode45"
  "Sundials: Adams"
  ]

abstols = 1.0 ./ 10.0 .^ (6:13)
reltols = 1.0 ./ 10.0 .^ (3:10)
wp = WorkPrecisionSet(prob,abstols,reltols,setups;
                      names = names,
                      appxsol=test_sol,dense=false,
                      save_everystep=false,numruns=100,maxiters=10000000,
                      timeseries_errors=false,verbose=false)
plot(wp,title="Non-stiff 1: Lotka-Volterra")

Non-Stiff Problem 2: Rigid Body

f = @ode_def_bare RigidBodyBench begin
  dy1  = -2*y2*y3
  dy2  = 1.25*y1*y3
  dy3  = -0.5*y1*y2 + 0.25*sin(t)^2
end
prob = ODEProblem(f,[1.0;0.0;0.9],(0.0,100.0))
sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14)
test_sol = TestSolution(sol)

setups = [Dict(:alg=>DP5())
          Dict(:alg=>dopri5())
          Dict(:alg=>Tsit5())
          Dict(:alg=>Vern7())
          Dict(:alg=>MATLABDiffEq.ode45())
          Dict(:alg=>MATLABDiffEq.ode113())
          Dict(:alg=>SciPyDiffEq.RK45())
          Dict(:alg=>SciPyDiffEq.LSODA())
          Dict(:alg=>SciPyDiffEq.odeint())
          Dict(:alg=>deSolveDiffEq.lsoda())
          Dict(:alg=>deSolveDiffEq.ode45())
          Dict(:alg=>CVODE_Adams())
  ]

names = [
  "Julia: DP5"
  "Hairer: dopri5"
  "Julia: Tsit5"
  "Julia: Vern7"
  "MATLAB: ode45"
  "MATLAB: ode113"
  "SciPy: RK45"
  "SciPy: LSODA"
  "SciPy: odeint"
  "deSolve: lsoda"
  "deSolve: ode45"
  "Sundials: Adams"
  ]

abstols = 1.0 ./ 10.0 .^ (6:13)
reltols = 1.0 ./ 10.0 .^ (3:10)
wp = WorkPrecisionSet(prob,abstols,reltols,setups;
                      names = names,
                      appxsol=test_sol,dense=false,
                      save_everystep=false,numruns=100,maxiters=10000000,
                      timeseries_errors=false,verbose=false)
plot(wp,title="Non-stiff 2: Rigid-Body")

Stiff Problem 1: ROBER

rober = @ode_def begin
  dy₁ = -k₁*y₁+k₃*y₂*y₃
  dy₂ =  k₁*y₁-k₂*y₂^2-k₃*y₂*y₃
  dy₃ =  k₂*y₂^2
end k₁ k₂ k₃
prob = ODEProblem(rober,[1.0,0.0,0.0],(0.0,1e5),[0.04,3e7,1e4])
sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14)
test_sol = TestSolution(sol)

abstols = 1.0 ./ 10.0 .^ (7:8)
reltols = 1.0 ./ 10.0 .^ (3:4);

setups = [Dict(:alg=>Rosenbrock23())
          Dict(:alg=>TRBDF2())
          Dict(:alg=>RadauIIA5())
          Dict(:alg=>rodas())
          Dict(:alg=>radau())
          Dict(:alg=>MATLABDiffEq.ode23s())
          Dict(:alg=>MATLABDiffEq.ode15s())
          Dict(:alg=>SciPyDiffEq.LSODA())
          Dict(:alg=>SciPyDiffEq.BDF())
          Dict(:alg=>SciPyDiffEq.odeint())
          Dict(:alg=>deSolveDiffEq.lsoda())
          Dict(:alg=>CVODE_BDF())
          ]

names = [
  "Julia: Rosenbrock23"
  "Julia: TRBDF2"
  "Julia: radau"
  "Hairer: rodas"
  "Hairer: radau"
  "MATLAB: ode23s"
  "MATLAB: ode15s"
  "SciPy: LSODA"
  "SciPy: BDF"
  "SciPy: odeint"
  "deSolve: lsoda"
  "Sundials: CVODE"
  ]

wp = WorkPrecisionSet(prob,abstols,reltols,setups;
                      names = names,print_names = true,
                      dense=false,verbose = false,
                      save_everystep=false,appxsol=test_sol,
                      maxiters=Int(1e5))
plot(wp,title="Stiff 1: ROBER", legend=:topleft)

Stiff Problem 2: HIRES

f = @ode_def Hires begin
  dy1 = -1.71*y1 + 0.43*y2 + 8.32*y3 + 0.0007
  dy2 = 1.71*y1 - 8.75*y2
  dy3 = -10.03*y3 + 0.43*y4 + 0.035*y5
  dy4 = 8.32*y2 + 1.71*y3 - 1.12*y4
  dy5 = -1.745*y5 + 0.43*y6 + 0.43*y7
  dy6 = -280.0*y6*y8 + 0.69*y4 + 1.71*y5 -
           0.43*y6 + 0.69*y7
  dy7 = 280.0*y6*y8 - 1.81*y7
  dy8 = -280.0*y6*y8 + 1.81*y7
end

u0 = zeros(8)
u0[1] = 1
u0[8] = 0.0057
prob = ODEProblem(f,u0,(0.0,321.8122))

sol = solve(prob,Rodas5(),abstol=1/10^14,reltol=1/10^14)
test_sol = TestSolution(sol)

abstols = 1.0 ./ 10.0 .^ (5:8)
reltols = 1.0 ./ 10.0 .^ (1:4);

setups = [Dict(:alg=>Rosenbrock23())
          Dict(:alg=>TRBDF2())
          Dict(:alg=>RadauIIA5())
          Dict(:alg=>rodas())
          Dict(:alg=>radau())
          Dict(:alg=>MATLABDiffEq.ode23s())
          Dict(:alg=>MATLABDiffEq.ode15s())
          Dict(:alg=>SciPyDiffEq.LSODA())
          Dict(:alg=>SciPyDiffEq.BDF())
          Dict(:alg=>SciPyDiffEq.odeint())
          Dict(:alg=>deSolveDiffEq.lsoda())
          Dict(:alg=>CVODE_BDF())
          ]

names = [
  "Julia: Rosenbrock23"
  "Julia: TRBDF2"
  "Julia: radau"
  "Hairer: rodas"
  "Hairer: radau"
  "MATLAB: ode23s"
  "MATLAB: ode15s"
  "SciPy: LSODA"
  "SciPy: BDF"
  "SciPy: odeint"
  "deSolve: lsoda"
  "Sundials: CVODE"
  ]

wp = WorkPrecisionSet(prob,abstols,reltols,setups;
                      names = names,print_names = true,
                      save_everystep=false,appxsol=test_sol,
                      maxiters=Int(1e5),numruns=100)
plot(wp,title="Stiff 2: Hires",legend=:topleft)

desolvediffeq.jl's People

Contributors

chrisrackauckas avatar christopher-dg avatar dependabot[bot] avatar devmotion avatar juliatagbot avatar ranocha avatar thazhemadam avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar

desolvediffeq.jl's Issues

TagBot trigger issue

This issue is used to trigger TagBot; feel free to unsubscribe.

If you haven't already, you should update your TagBot.yml to include issue comment triggers.
Please see this post on Discourse for instructions and more details.

If you'd like for me to do this for you, comment TagBot fix on this issue.
I'll open a PR within a few hours, please be patient!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.