Giter Club home page Giter Club logo

pytorch-receptive-field's Introduction

pytorch-receptive-field

Build Status

Compute CNN receptive field size in pytorch

Usage

git clone https://github.com/Fangyh09/pytorch-receptive-field.git

from torch_receptive_field import receptive_field
receptive_field(model, input_size=(channels, H, W))

Or

from torch_receptive_field import receptive_field
dict = receptive_field(model, input_size=(channels, H, W))
receptive_field_for_unit(receptive_field_dict, "2", (2,2))

Example

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_receptive_field import receptive_field

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        y = self.conv(x)
        y = self.bn(y)
        y = self.relu(y)
        y = self.maxpool(y)
        return y


device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
model = Net().to(device)

receptive_field_dict = receptive_field(model, (3, 256, 256))
receptive_field_for_unit(receptive_field_dict, "2", (2,2))
------------------------------------------------------------------------------
        Layer (type)    map size      start       jump receptive_field
==============================================================================
        0             [256, 256]        0.5        1.0             1.0
        1             [128, 128]        0.5        2.0             7.0
        2             [128, 128]        0.5        2.0             7.0
        3             [128, 128]        0.5        2.0             7.0
        4               [64, 64]        0.5        4.0            11.0
==============================================================================
Receptive field size for layer 2, unit_position (1, 1),  is
 [(0, 6.0), (0, 6.0)]

More

start is the center of first item in the map grid .

jump is the distance of the adjacent item in the map grid.

receptive_field is the field size of the item in the map grid.

Todo

  • Add Travis CI

Related

Thanks @pytorch-summary

https://medium.com/mlreview/a-guide-to-receptive-field-arithmetic-for-convolutional-neural-networks-e0f514068807

pytorch-receptive-field's People

Contributors

animadversio avatar developer0hye avatar fangyh09 avatar ghostatspirit avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.