Giter Club home page Giter Club logo

trainer's Introduction

πŸ‘Ÿ Trainer

An opinionated general purpose model trainer on PyTorch with a simple code base.

Installation

From Github:

git clone https://github.com/coqui-ai/Trainer
cd Trainer
make install

From PyPI:

pip install trainer

Prefer installing from Github as it is more stable.

Implementing a model

Subclass and overload the functions in the TrainerModel()

Training a model with auto-optimization

See the MNIST example.

Training a model with advanced optimization

With πŸ‘Ÿ you can define the whole optimization cycle as you want as the in GAN example below. It enables more under-the-hood control and flexibility for more advanced training loops.

You just have to use the scaled_backward() function to handle mixed precision training.

...

def optimize(self, batch, trainer):
    imgs, _ = batch

    # sample noise
    z = torch.randn(imgs.shape[0], 100)
    z = z.type_as(imgs)

    # train discriminator
    imgs_gen = self.generator(z)
    logits = self.discriminator(imgs_gen.detach())
    fake = torch.zeros(imgs.size(0), 1)
    fake = fake.type_as(imgs)
    loss_fake = trainer.criterion(logits, fake)

    valid = torch.ones(imgs.size(0), 1)
    valid = valid.type_as(imgs)
    logits = self.discriminator(imgs)
    loss_real = trainer.criterion(logits, valid)
    loss_disc = (loss_real + loss_fake) / 2

    # step dicriminator
    _, _ = self.scaled_backward(loss_disc, None, trainer, trainer.optimizer[0])

    if trainer.total_steps_done % trainer.grad_accum_steps == 0:
        trainer.optimizer[0].step()
        trainer.optimizer[0].zero_grad()

    # train generator
    imgs_gen = self.generator(z)

    valid = torch.ones(imgs.size(0), 1)
    valid = valid.type_as(imgs)

    logits = self.discriminator(imgs_gen)
    loss_gen = trainer.criterion(logits, valid)

    # step generator
    _, _ = self.scaled_backward(loss_gen, None, trainer, trainer.optimizer[1])
    if trainer.total_steps_done % trainer.grad_accum_steps == 0:
        trainer.optimizer[1].step()
        trainer.optimizer[1].zero_grad()
    return {"model_outputs": logits}, {"loss_gen": loss_gen, "loss_disc": loss_disc}

...

See the GAN training example with Gradient Accumulation

Training with Batch Size Finder

see the test script here for training with batch size finder.

The batch size finder starts at a default BS(defaults to 2048 but can also be user defined) and searches for the largest batch size that can fit on your hardware. you should expect for it to run multiple trainings until it finds it. to use it instead of calling trainer.fit() youll call trainer.fit_with_largest_batch_size(starting_batch_size=2048) with starting_batch_size being the batch the size you want to start the search with. very useful if you are wanting to use as much gpu mem as possible.

Training with DDP

$ python -m trainer.distribute --script path/to/your/train.py --gpus "0,1"

We don't use .spawn() to initiate multi-gpu training since it causes certain limitations.

  • Everything must the pickable.
  • .spawn() trains the model in subprocesses and the model in the main process is not updated.
  • DataLoader with N processes gets really slow when the N is large.

Training with Accelerate

Setting use_accelerate in TrainingArgs to True will enable training with Accelerate.

You can also use it for multi-gpu or distributed training.

CUDA_VISIBLE_DEVICES="0,1,2" accelerate launch --multi_gpu --num_processes 3 train_recipe_autoregressive_prompt.py

See the Accelerate docs.

Adding a callback

πŸ‘Ÿ Supports callbacks to customize your runs. You can either set callbacks in your model implementations or give them explicitly to the Trainer.

Please check trainer.utils.callbacks to see available callbacks.

Here is how you provide an explicit call back to a πŸ‘ŸTrainer object for weight reinitialization.

def my_callback(trainer):
    print(" > My callback was called.")

trainer = Trainer(..., callbacks={"on_init_end": my_callback})
trainer.fit()

Profiling example

  • Create the torch profiler as you like and pass it to the trainer.
    import torch
    profiler = torch.profiler.profile(
        activities=[
            torch.profiler.ProfilerActivity.CPU,
            torch.profiler.ProfilerActivity.CUDA,
        ],
        schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        on_trace_ready=torch.profiler.tensorboard_trace_handler("./profiler/"),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    )
    prof = trainer.profile_fit(profiler, epochs=1, small_run=64)
    then run Tensorboard
  • Run the tensorboard.
    tensorboard --logdir="./profiler/"

Supported Experiment Loggers

To add a new logger, you must subclass BaseDashboardLogger and overload its functions.

Anonymized Telemetry

We constantly seek to improve 🐸 for the community. To understand the community's needs better and address them accordingly, we collect stripped-down anonymized usage stats when you run the trainer.

Of course, if you don't want, you can opt out by setting the environment variable TRAINER_TELEMETRY=0.

trainer's People

Contributors

erogol avatar weberjulian avatar a-froghyar avatar edresson avatar shenberg avatar iprovalo avatar loganhart02 avatar ppisljar avatar sadeghkrmi avatar zutatensuppe avatar bitnom avatar manmay-nakhashi avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    πŸ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. πŸ“ŠπŸ“ˆπŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❀️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.