Giter Club home page Giter Club logo

rxn-models's Introduction

Python wrapper for the IBM RXN for Chemistry API

Actions tests PyPI version License: MIT Binder

logo

A python wrapper to access the API of the IBM RXN for Chemistry website.

Install

From PYPI:

pip install rxn4chemistry

Or directly from the repo:

pip install git+https://github.com/rxn4chemistry/rxn4chemistry.git

Usage

By default, the wrapper connects to the https://rxn.res.ibm.com server. This can be overriden by setting an environment variable. To set a different url, simply do:

export RXN4CHEMISTRY_BASE_URL="https://some.other.rxn.server"

The base url can be directly set when instantiating the RXN4ChemistryWrapper (this will overwrite the environment variable):

api_key = 'API_KEY'
from rxn4chemistry import RXN4ChemistryWrapper

rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key, base_url='https://some.other.rxn.server')
# or set it afterwards
# rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key)
# rxn4chemistry_wrapper.set_base_url('https://some.other.rxn.server')

Create a project

Get your API key from here and build the wrapper:

api_key = 'API_KEY'
from rxn4chemistry import RXN4ChemistryWrapper

rxn4chemistry_wrapper = RXN4ChemistryWrapper(api_key=api_key)
# NOTE: you can create a project or set an esiting one using:
# rxn4chemistry_wrapper.set_project('PROJECT_ID')
rxn4chemistry_wrapper.create_project('test_wrapper')
print(rxn4chemistry_wrapper.project_id)

Reaction outcome prediction

Running a reaction outcome prediction is as simple as:

response = rxn4chemistry_wrapper.predict_reaction(
    'BrBr.c1ccc2cc3ccccc3cc2c1'
)
results = rxn4chemistry_wrapper.get_predict_reaction_results(
    response['prediction_id']
)
print(results['response']['payload']['attempts'][0]['smiles'])

Extracting actions from a paragraph describing a recipe

Extract the actions from a recipe:

results = rxn4chemistry_wrapper.paragraph_to_actions(
    'To a stirred solution of '
    '7-(difluoromethylsulfonyl)-4-fluoro-indan-1-one (110 mg, '
    '0.42 mmol) in methanol (4 mL) was added sodium borohydride '
    '(24 mg, 0.62 mmol). The reaction mixture was stirred at '
    'ambient temperature for 1 hour.'
)
print(results['actions'])

Retrosynthesis prediction

Predict a retrosynthetic pathway given a product:

response = rxn4chemistry_wrapper.predict_automatic_retrosynthesis(
    'Brc1c2ccccc2c(Br)c2ccccc12'
)
results = rxn4chemistry_wrapper.get_predict_automatic_retrosynthesis_results(
    response['prediction_id']
)
print(results['status'])
# NOTE: upon 'SUCCESS' you can inspect the predicted retrosynthetic paths.
print(results['retrosynthetic_paths'][0])

See here for a more comprehensive example.

Biocatalysed retrosynthesis prediction

Predict a biocatalysed retrosynthetic pathway given a product by specifying the model trained on biocatalysed reactions:

response = rxn4chemistry_wrapper.predict_automatic_retrosynthesis(
    'OC1C(O)C=C(Br)C=C1', ai_model='enzymatic-2021-04-16'
)
results = rxn4chemistry_wrapper.get_predict_automatic_retrosynthesis_results(
    response['prediction_id']
)
print(results['status'])
# NOTE: upon 'SUCCESS' you can inspect the predicted retrosynthetic paths.
print(results['retrosynthetic_paths'][0])

Prediction of reaction properties (atom-to-atom mapping, reaction yield, ...)

Prediction of atom-to-atom mapping (see paper):

response = rxn4chemistry_wrapper.predict_reaction_properties(
    reactions=[
        "CC(C)S.CN(C)C=O.Fc1cccnc1F.O=C([O-])[O-].[K+].[K+]>>CC(C)Sc1ncccc1F",
        "C1COCCO1.CC(C)(C)OC(=O)CONC(=O)NCc1cccc2ccccc12.Cl>>O=C(O)CONC(=O)NCc1cccc2ccccc12",
        "C=CCN=C=S.CNCc1ccc(C#N)cc1.NNC(=O)c1cn2c(n1)CCCC2>>C=CCN1C(C2=CN3CCCCC3=N2)=NN=C1N(C)CC1=CC=C(C#N)C=C1",
    ],
    ai_model="atom-mapping-2020",
)
for predicted_mapping_dict in response["response"]["payload"]["content"]:
    print(predicted_mapping_dict["value"])

Prediction of reaction yields (see paper):

response = rxn4chemistry_wrapper.predict_reaction_properties(
    reactions=[
        "Clc1ccccn1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N~1)C(F)(F)F.COc1ccc(OC)c(P([C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)[C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)c1-c1c(C(C)C)cc(C(C)C)cc1C(C)C.CCN=P(N=P(N(C)C)(N(C)C)N(C)C)(N(C)C)N(C)C.Cc1cc(C)on1>>Cc1ccc(Nc2ccccn2)cc1",
        "Brc1ccccn1.Cc1ccc(N)cc1.O=S(=O)(O[Pd]1c2ccccc2-c2ccccc2N~1)C(F)(F)F.COc1ccc(OC)c(P([C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)[C@]23C[C@H]4C[C@H](C[C@H](C4)C2)C3)c1-c1c(C(C)C)cc(C(C)C)cc1C(C)C.CCN=P(N=P(N(C)C)(N(C)C)N(C)C)(N(C)C)N(C)C.COC(=O)c1ccno1>>Cc1ccc(Nc2ccccn2)cc1",
    ],
    ai_model="yield-2020-08-10",
)
for predicted_yield_dict in response["response"]["payload"]["content"]:
    print(predicted_yield_dict["value"])

Create a synthesis and start it on the robot (or simulator)

Create a synthesis from a retrosynthesis sequence:

# Each retrosynthetic path predicted has a unique sequence_id that can
# be used to create a new synthesis
response = rxn4chemistry_wrapper.create_synthesis_from_sequence(
    sequence_id=results['retrosynthetic_paths'][0]['sequenceId']
)
print(response['synthesis_id'])

# get the entire list of actions for the entire synthesis, as well as a tree representation
synthesis_tree, ordered_tree_nodes, ordered_list_of_actions = rxn4chemistry_wrapper.get_synthesis_plan(
    synthesis_id=response['synthesis_id']
)
for action in ordered_list_of_actions:
    print(action)

synthesis_status_result = rxn4chemistry_wrapper.start_synthesis(
    synthesis_id=response['synthesis_id']
)
print(synthesis_status_result['status'])

synthesis_status_result = rxn4chemistry_wrapper.get_synthesis_status(
    synthesis_id=response['synthesis_id']
)
print(synthesis_status_result['status'])

Forward prediction in batch

It is possible to run a batch of forward reaction predictions without linking them to a project:

response = rxn4chemistry_wrapper.predict_reaction_batch(precursors_list=['BrBr.c1ccc2cc3ccccc3cc2c1', 'Cl.c1ccc2cc3ccccc3cc2c1']*5)
# wait for the predictions to complete
time.sleep(2)
print(rxn4chemistry_wrapper.get_predict_reaction_batch_results(response["task_id"]))

NOTE: the results for batch prediction are not stored permanently in our databases, so we strongly recommend to save them since they will expire.

Prediction of multiple reaction outcomes (in batch)

It is also possible to predict multiple forward reaction prediction outcomes in batch:

response = rxn4chemistry_wrapper.predict_reaction_batch_topn(
    precursors_lists=[
        ["BrBr", "c1ccc2cc3ccccc3cc2c1"],
        ["BrBr", "c1ccc2cc3ccccc3cc2c1CCO"],
    ],
    topn=3,
)
# wait for the predictions to complete
time.sleep(2)
print(rxn4chemistry_wrapper.get_predict_reaction_batch_topn_results(response["task_id"]))

NOTE: the results for batch prediction are not stored permanently in our databases, so we strongly recommend to save them since they will expire.

Enable logging

Logging by the library is disabled by default as it may interfere with programmatic uses.

In the very top of the rxn4chemistry_tour.ipynb example notebook you can see a line that enables all logging in the notebook.

import logging
logging.basicConfig(level=logging.INFO, format='%(levelname)s : %(message)s')

This may also enable logging from other libraries. If you wish to selectively enable the logs from rxn4chemistry, consider something like this:

import logging
logger = logging.getLogger("rxn4chemistry")
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter('%(levelname)s : %(message)s'))
logger.addHandler(handler)
logger.setLevel(logging.DEBUG)

Examples

To learn more see the examples.

Documentation

The documentation is hosted here using GitHub pages.

rxn-models's People

Contributors

aless-t avatar drugilsberg avatar pschwllr avatar

Stargazers

 avatar  avatar

Watchers

 avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.