Giter Club home page Giter Club logo

deepanomaly4docs's Introduction

Deep Anomaly Detection for Text Documents

This repository contains the implementation for my Master thesis "Deep Anomaly Detection for Text Documents", written in 2021 at the University of Potsdam.

Included is code to run experiment for unsupervised as well as supervised anomaly detection for text documents from various datasets. The thesis can be found here in the repository: Thesis PDF.

Ressources

Literature

Ruff et. al.

  • Ruff, Lukas, Robert Vandermeulen, et al. “Deep One-Class Classification.” International Conference on Machine Learning, 2018, pp. 4393–402. proceedings.mlr.press, http://proceedings.mlr.press/v80/ruff18a.html.
  • Ruff, Lukas, Robert A. Vandermeulen, Nico Görnitz, et al. “Deep Semi-Supervised Anomaly Detection.” ArXiv:1906.02694 [Cs, Stat], Feb. 2020. arXiv.org, http://arxiv.org/abs/1906.02694.
  • Ruff, Lukas, Robert A. Vandermeulen, Billy Joe Franks, et al. “Rethinking Assumptions in Deep Anomaly Detection.” ArXiv:2006.00339 [Cs, Stat], May 2020. arXiv.org, http://arxiv.org/abs/2006.00339.
  • Ruff, Lukas, Yury Zemlyanskiy, et al. “Self-Attentive, Multi-Context One-Class Classification for Unsupervised Anomaly Detection on Text.” Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, 2019, pp. 4061–71. DOI.org (Crossref), doi:10.18653/v1/P19-1398.

Outlier Exposure

  • Hendrycks, Dan, Mantas Mazeika, and Thomas Dietterich. “Deep Anomaly Detection with Outlier Exposure.” ArXiv:1812.04606 [Cs, Stat], Jan. 2019. arXiv.org, http://arxiv.org/abs/1812.04606.
  • Hendrycks, Dan, and Kevin Gimpel. “A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks.” ArXiv:1610.02136 [Cs], Oct. 2018. arXiv.org, http://arxiv.org/abs/1610.02136.

Deep Methods

  • Pang, Guansong, et al. “Deep Anomaly Detection with Deviation Networks.” ArXiv:1911.08623 [Cs, Stat], Nov. 2019. arXiv.org, http://arxiv.org/abs/1911.08623.
  • Pang, Guansong, et al. “Deep Weakly-Supervised Anomaly Detection.” ArXiv:1910.13601 [Cs, Stat], Jan. 2020. arXiv.org, http://arxiv.org/abs/1910.13601.


  • Golan, Izhak, and Ran El-Yaniv. “Deep Anomaly Detection Using Geometric Transformations.” ArXiv:1805.10917 [Cs, Stat], Nov. 2018. arXiv.org, http://arxiv.org/abs/1805.10917.
  • Hendrycks, Dan, Mantas Mazeika, Saurav Kadavath, et al. Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty. p. 12.

Autoencoder

  • Huang, Chaoqin, et al. “Attribute Restoration Framework for Anomaly Detection.” ArXiv:1911.10676 [Cs], June 2020. arXiv.org, http://arxiv.org/abs/1911.10676.
  • Cao, Van Loi, et al. “A Hybrid Autoencoder and Density Estimation Model for Anomaly Detection.” Parallel Problem Solving from Nature – PPSN XIV, edited by Julia Handl et al., vol. 9921, Springer International Publishing, 2016, pp. 717–26. DOI.org (Crossref), doi:10.1007/978-3-319-45823-6_67.
  • Schreyer, Marco, et al. “Detection of Anomalies in Large Scale Accounting Data Using Deep Autoencoder Networks.” ArXiv:1709.05254 [Cs], Aug. 2018. arXiv.org, http://arxiv.org/abs/1709.05254.

Doc2Vec

  • Le, Quoc V., and Tomas Mikolov. “Distributed Representations of Sentences and Documents.” ArXiv:1405.4053 [Cs], May 2014. arXiv.org, http://arxiv.org/abs/1405.4053.
  • Lau, Jey Han, and Timothy Baldwin. “An Empirical Evaluation of Doc2vec with Practical Insights into Document Embedding Generation.” ArXiv:1607.05368 [Cs], July 2016. arXiv.org, http://arxiv.org/abs/1607.05368.

UMAP

  • McInnes, Leland, et al. “UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction.” ArXiv:1802.03426 [Cs, Stat], Dec. 2018. arXiv.org, http://arxiv.org/abs/1802.03426.
  • Allaoui, Mebarka, et al. “Considerably Improving Clustering Algorithms Using UMAP Dimensionality Reduction Technique: A Comparative Study.” Image and Signal Processing, edited by Abderrahim El Moataz et al., Springer International Publishing, 2020, pp. 317–25. Springer Link, doi:10.1007/978-3-030-51935-3_34.
  • Sainburg, Tim, et al. “Parametric UMAP: Learning Embeddings with Deep Neural Networks for Representation and Semi-Supervised Learning.” ArXiv:2009.12981 [Cs, q-Bio, Stat], Sept. 2020. arXiv.org, http://arxiv.org/abs/2009.12981.

Code

Data




Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

deepanomaly4docs's People

Contributors

dependabot[bot] avatar

Stargazers

Nikolaus Schlemm avatar  avatar

Watchers

 avatar

Forkers

seantangtao

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.