Giter Club home page Giter Club logo

tokio's Introduction

Tokio

NOTE: Tokio's master branch is currently in the process of moving to std::future::Future, for v0.1.x based tokio releases please check out the v0.1.x branch.

A runtime for writing reliable, asynchronous, and slim applications with the Rust programming language. It is:

  • Fast: Tokio's zero-cost abstractions give you bare-metal performance.

  • Reliable: Tokio leverages Rust's ownership, type system, and concurrency model to reduce bugs and ensure thread safety.

  • Scalable: Tokio has a minimal footprint, and handles backpressure and cancellation naturally.

Crates.io MIT licensed Build Status Gitter chat

Website | Guides | API Docs | Chat

The API docs for the master branch are currently out of date as master is undergoing significant churn as it is updated to use std::future. The docs will be udpated once the branch stabilizes.

Overview

Tokio is an event-driven, non-blocking I/O platform for writing asynchronous applications with the Rust programming language. At a high level, it provides a few major components:

  • A multithreaded, work-stealing based task scheduler.
  • A reactor backed by the operating system's event queue (epoll, kqueue, IOCP, etc...).
  • Asynchronous TCP and UDP sockets.

These components provide the runtime components necessary for building an asynchronous application.

Example

A basic TCP echo server with Tokio:

use tokio::prelude::*;
use tokio::io::copy;
use tokio::net::TcpListener;

fn main() {
    // Bind the server's socket.
    let addr = "127.0.0.1:12345".parse().unwrap();
    let listener = TcpListener::bind(&addr)
        .expect("unable to bind TCP listener");

    // Pull out a stream of sockets for incoming connections
    let server = listener.incoming()
        .map_err(|e| eprintln!("accept failed = {:?}", e))
        .for_each(|sock| {
            // Split up the reading and writing parts of the
            // socket.
            let (reader, writer) = sock.split();

            // A future that echos the data and returns how
            // many bytes were copied...
            let bytes_copied = copy(reader, writer);

            // ... after which we'll print what happened.
            let handle_conn = bytes_copied.map(|amt| {
                println!("wrote {:?} bytes", amt)
            }).map_err(|err| {
                eprintln!("IO error {:?}", err)
            });

            // Spawn the future as a concurrent task.
            tokio::spawn(handle_conn)
        });

    // Start the Tokio runtime
    tokio::run(server);
}

More examples can be found here. Note that the master branch is currently being updated to use async / await. The examples are not fully ported. Examples for stable Tokio can be found here.

Getting Help

First, see if the answer to your question can be found in the Guides or the API documentation. If the answer is not there, there is an active community in the Tokio Gitter channel. We would be happy to try to answer your question. Last, if that doesn't work, try opening an issue with the question.

Contributing

๐ŸŽˆ Thanks for your help improving the project! We are so happy to have you! We have a contributing guide to help you get involved in the Tokio project.

Project layout

The tokio crate, found at the root, is primarily intended for use by application developers. Library authors should depend on the sub crates, which have greater guarantees of stability.

The crates included as part of Tokio are:

  • tokio-current-thread: Schedule the execution of futures on the current thread.

  • tokio-executor: Task execution related traits and utilities.

  • tokio-fs: Filesystem (and standard in / out) APIs.

  • tokio-codec: Utilities for encoding and decoding protocol frames.

  • tokio-io: Asynchronous I/O related traits and utilities.

  • tokio-macros: Macros for usage with Tokio.

  • tokio-reactor: Event loop that drives I/O resources (like TCP and UDP sockets).

  • tokio-tcp: TCP bindings for use with tokio-io and tokio-reactor.

  • tokio-threadpool: Schedules the execution of futures across a pool of threads.

  • tokio-timer: Time related APIs.

  • tokio-udp: UDP bindings for use with tokio-io and tokio-reactor.

  • tokio-uds: Unix Domain Socket bindings for use with tokio-io and tokio-reactor.

Related Projects

In addition to the crates in this repository, the Tokio project also maintains several other libraries, including:

  • tracing (formerly tokio-trace): A framework for application-level tracing and async-aware diagnostics.

  • mio: A low-level, cross-platform abstraction over OS I/O APIs that powers tokio.

  • bytes: Utilities for working with bytes, including efficient byte buffers.

Supported Rust Versions

Tokio is built against the latest stable, nightly, and beta Rust releases. The minimum version supported is the stable release from three months before the current stable release version. For example, if the latest stable Rust is 1.29, the minimum version supported is 1.26. The current Tokio version is not guaranteed to build on Rust versions earlier than the minimum supported version.

License

This project is licensed under the MIT license.

Contribution

Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in Tokio by you, shall be licensed as MIT, without any additional terms or conditions.

tokio's People

Contributors

alex avatar alexcrichton avatar asomers avatar aturon avatar carllerche avatar cramertj avatar debris avatar dekellum avatar dpc avatar frewsxcv avatar hawkw avatar ipetkov avatar johndoneth avatar jonhoo avatar juleskers avatar jxs avatar kpp avatar lnicola avatar luciofranco avatar marwes avatar mexus avatar oberien avatar rotty avatar rrichardson avatar seanmonstar avatar sfackler avatar srijs avatar taiki-e avatar thomasdezeeuw avatar vorner avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.