Giter Club home page Giter Club logo

rfd's Introduction

Requests for Discussion

Writing down ideas for system enhancement while they are still nascent allows for important, actionable technical discussion. We capture these in Requests for Discussion, which are documents in the original sprit of the IETF Request for Comments, as expressed by RFC 3:

The content of a note may be any thought, suggestion, etc. related to the software or other aspect of the network. Notes are encouraged to be timely rather than polished. Philosophical positions without examples or other specifics, specific suggestions or implementation techniques without introductory or background explication, and explicit questions without any attempted answers are all acceptable. The minimum length for a note is one sentence.

These standards (or lack of them) are stated explicitly for two reasons. First, there is a tendency to view a written statement as ipso facto authoritative, and we hope to promote the exchange and discussion of considerably less than authoritative ideas. Second, there is a natural hesitancy to publish something unpolished, and we hope to ease this inhibition.

The philosophy of our Requests for Discussion is exactly this: timely rather than polished, with the immediate idea of promoting technical discussion. Over time, we expect that this discussion will often converge on an authoritative explanation of new functionality -- but it's entirely acceptable for an RFD to serve only as a vector of discussion. (We use the term "Requests for Discussion" in lieu of "Requests for Comments" to avoid conflation with the IETF construct -- and the more formal writing that it has come to represent.)

RFDs

state RFD
publish RFD 1 Triton Container Naming Service
publish RFD 2 Docker Logging in SDC
draft RFD 3 Triton Compute Nodes Reboot
draft RFD 4 Docker Build Implementation For Triton
publish RFD 5 Triton Change Feed Support
draft RFD 6 Improving Triton and Manta RAS Infrastructure
draft RFD 7 Datalink LLDP and State Tracking
publish RFD 9 sdcadm fabrics management
publish RFD 10 Sending GZ Docker Logs to Manta
draft RFD 11 IPv6 and multiple IP addresses support in Triton
draft RFD 12 Bedtime for node-smartdc
draft RFD 13 RBAC v2 for Improved Organization and Docker RBAC Support
draft RFD 14 Signed ZFS Send
draft RFD 15 Reduce/Eliminate runtime LX image customization
predraft RFD 16 Manta Metering
draft RFD 17 Cloud Analytics v2
predraft RFD 18 Support for using labels to select networks and packages
predraft RFD 19 Interface Drift In Workflow Modules
draft RFD 20 Manta Slop-Aware Zone Scheduling
draft RFD 21 Metadata Scrubber For Triton
draft RFD 22 Improved user experience after a request has failed
draft RFD 23 A plan for Manta docs
predraft RFD 24 Designation API improvements to facilitate platform update
draft RFD 25 Pluralizing CloudAPI CreateMachine et al
draft RFD 26 Network Shared Storage for Triton
publish RFD 27 Triton Container Monitor
predraft RFD 28 Improving syncing between Compute Nodes and NAPI
draft RFD 29 Nothing in Triton should rely on ur outside bootstrapping and emergencies
predraft RFD 30 Handling "lastexited" for zones when CN is rebooted or crashes
draft RFD 31 libscsi and uscsi(7I) Improvements for Firmware Upgrade
draft RFD 32 Multiple IP Addresses in NAPI
publish RFD 33 Moray client v2
predraft RFD 34 Instance migration
draft RFD 35 Distributed Tracing for Triton
predraft RFD 36 Mariposa
draft RFD 37 Metrics Instrumenter
draft RFD 38 Zone Physical Memory Capping
draft RFD 39 VM Attribute Cache (vminfod)
publish RFD 40 Standalone IMGAPI deployment
draft RFD 41 Improved JavaScript errors
predraft RFD 42 Provide global zone pkgsrc package set
predraft RFD 43 Rack Aware Network Pools
predraft RFD 44 Create VMs with Delegated Datasets
draft RFD 45 Tooling for code reviews and code standards
draft RFD 46 Origin images for Triton and Manta core images
draft RFD 47 Retention policy for Joyent engineering data in Manta
predraft RFD 48 Triton A&A Overhaul (AUTHAPI)
(WIP) RFD 49 AUTHAPI internals
predraft RFD 50 Enhanced Audit Trail for Instance Lifecycle Events
draft RFD 51 Code Review Guidance
draft RFD 52 Moray test suite rework
draft RFD 53 Improving ZFS Pool Layout Flexibility
predraft RFD 54 Remove 'autoboot' when VMs stop from within
draft RFD 55 LX support for Namespaces
predraft RFD 56 Revamp Cloudapi
predraft RFD 57 Moving to Content Addressable Docker Images
predraft RFD 58 Moving Net-Agent Forward
predraft RFD 59 Update Triton to Node.js v4-LTS
draft RFD 60 Scaling the Designation API
predraft RFD 61 CNAPI High Availability
predraft RFD 62 Replace Workflow API
predraft RFD 63 Adding branding to kernel cred_t
predraft RFD 64 Hardware Inventory GRUB Menu Item
draft RFD 65 Multipart Uploads for Manta
draft RFD 66 USBA improvements for USB 3.x
predraft RFD 67 Triton headnode resilience
draft RFD 68 Triton versioning
draft RFD 69 Metadata socket improvements
draft RFD 70 Joyent Repository Metadata

Contents of an RFD

The following is a way to help you think about and structure an RFD document. This includes some things that we think you might want to include. If you're unsure if you need to write an RFD, here are some occasions where it usually is appropriate:

  • Adding new endpoints to an API or creating an entirely new API
  • Adding new commands or adding new options
  • Changing the behaviour of endpoints, commands, APIs
  • Something that changes how users and operators interact with the overall system.

RFDs start as a simple markdown file that use a bit of additional metadata to describe its current state. Every RFD needs a title that serves as a simple synopsis of the document. (This title is not fixed; RFDs are numbered to allow the title to change.) In general, we recommend any initial RFD address and/or ask the following questions:

Title

This is a simple synopsis of the document. Note, the title is not fixed. It may change as the RFD evolves.

What problem is this solving?

The goal here is to describe the problems that we are trying to address that motivate the solution. The problem should not be described in terms of the solution.

What are the principles and constraints on the design of the solution?

You should use this section to describe the first principles or other important decisions that constrain the problem. For example, a constraint on the design may be that we should be able to do an operation without downtime.

How will users interact with these features?

Here, you should consider both operators, end users, and developers. You should consider not only how they'll verify that it's working correctly, but also how they'll verify if it's broken and what actions they should take from there.

What repositories are being changed, if known?

If it's known, a list of what git repositories are being changed as a result of this would be quite useful.

What public interfaces are changing?

What interfaces that users and operators are using and rely upon are changing? Note that when changing public interfaces we have to be extra careful to ensure that we don't break existing users and scripts.

What private interfaces are changing?

What interfaces that are private to the system are changing? Changing these interfaces may impact the system, but should not impact operators and users directly.

What is the upgrade impact?

For an existing install, what are the implications if anything is upgraded through the normal update mechanisms, e.g. platform reboot, sdcadm update, manta-adm update, etc. Are there any special steps that need to be taken or do certain updates need to happen together for this

What is the security impact?

What (untrusted) user input (including both data and code) will be used as part of the change? Which components will interact with that input? How will that input be validated and managed securely? What new operations are exposed and which privileges will they require (both system privileges and Triton privileges)? How would an attacker use the proposed facilities to escalate their privileges?

Mechanics of an RFD

To create a new RFD, you should do the following steps.

Allocate a new RFD number

RFDs are numbered starting at 1, and then increase from there. When you start, you should allocate the next currently unused number. Note that if someone puts back to the repository before you, then you should just increase your number to the next available one. So, if the next RFD would be number 42, then you should make the directory 0042 and place it in the file 0042.md. Note, that while we use four digits in the directories and numbering, when referring to an RFD, you do not need to use the leading zeros.

$ mkdir -p rfd/0042
$ cp prototypes/prototype.md rfd/0042/README.md
$

Write the RFD

At this point, you should write up the RFD. Any files that end in *.md will automatically be rendered into HTML and any other assets in that directory will automatically be copied into the output directory.

RFDs should have a default text width of 80 characters. Any other materials related to that RFD should be in the same directory.

RFD Metadata and State

At the start of every RFD document, we'd like to include a brief amount of metadata. The metadata format is based on the python-markdown2 metadata format. It'd look like:

---
authors: Han Solo <[email protected]>, Alexander Hamilton <[email protected]>
state: draft
---

We keep track of two pieces of metadata. The first is the authors, the second is the state. There may be any number of authors, they should be listed with their name and e-mail address.

Currently the only piece of metadata we keep track of is the state. The state can be in any of the following. An RFD can be in one of the following four states:

  1. predraft
  2. draft
  3. publish
  4. abandoned

While a document is in the predraft state, it indicates that the work is not yet ready for discussion, but the RFD is effectively a placeholder. Documents under active discussion should be in the draft state. Once (or if) discussion has converged and the document has come to reflect reality rather than propose it, it should be updated to the publish state.

Note that just because something is in the publish state does not mean that it cannot be updated and corrected. See the "Touching up" section for more information.

Finally, if an idea is found to be non-viable (that is, deliberately never implemented) or if an RFD should be otherwise indicated that it should be ignored, it can be moved into the abandoned state.

Start the discussion

Once you have reached a point where you're happy with your thoughts and notes, then to start the discussion, you should first make sure you've pushed your changes to the repository and that the build is working.

From here, send an e-mail to the appropriate mailing list that best fits your work. The options are:

The subject of the message should be the RFD number and synopsis. For example, if you RFD number 169 with the title Overlay Networks for Triton, then the subject would be RFD 169 Overlay Networks for Triton.

In the body, make sure to include a link to the RFD.

Finishing up

When discussion has wrapped up and the relevant feedback has been incorporated, then you should go ahead and change the state of the document to publish and push that change.

Touching up

As work progresses on a project, it may turn out that our initial ideas and theories have been disproved or other architectural issues have come up. In such cases, you should come back and update the RFD to reflect the final conclusions or, if it's a rather substantial issue, then you should consider creating a new RFD.

Contributing

Contributions are welcome, you do not have to be a Joyent employee to submit an RFD or to comment on one. The discussions for RFDs happen on the open on the various mailing lists related to Triton, Manta, and SmartOS.

To submit a new RFD, please provide a git patch or a pull request that consists of a single squashed commit and we will incorporate it into the repository or feel free to send out the document to the mailing list and as we discuss it, we can work together to pull it into the RFD repository.

rfd's People

Contributors

trentm avatar joshwilsdon avatar richardkiene avatar nickziv avatar jjelinek avatar rmustacc avatar arekinath avatar kusor avatar melloc avatar jordanhendricks avatar twhiteman avatar bahamas10 avatar misterbisson avatar bcantrill avatar pfmooney avatar bahamat avatar cburroughs avatar orlandov avatar davepacheco avatar lderezinski avatar markebrooks avatar lparkes avatar

Watchers

James Cloos avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.