Giter Club home page Giter Club logo

hymd's Introduction

License: GPL v3 build docs codecov PyPI version


HylleraasMD (HyMD) is a massively parallel Python package for hybrid particle-field molecular dynamics (hPF-MD) simulations of coarse-grained bio- and soft-matter systems.

HyMD can run canonical hPF-MD simulations [1], or filtered density Hamiltonian hPF (HhPF-MD) simulations [2], with or without explicit PME electrostatic interactions [3]. It includes all standard intramolecular interactions, including stretching, bending, torsional, and combined bending-dihedral potentials. Additionally, topological reconstruction of permanent peptide chain backbone dipoles is possible for accurate recreation of protein conformational dynamics [4]. Martini style elastic networks (ElNeDyn) [5] are also supported.

HyMD uses the pmesh library for particle-mesh operations, with the PPFT [6] backend for FFTs through the pfft-python bindings. File IO is done via HDF5 formats to allow MPI parallel reads.

User Guide

Detailed installation and user guide, together with comprehensive example simulations are located in the HylleraasMD documentation.

Run simulations by

python3 -m hymd [CONFIGURATION_FILE] [TOPOLOGY_FILE] (--OPTIONAL_ARGS)

Run interactively in Google Colaboratory

A Google Colaboratory jupyter notebook is setup here with a working HyMD fully installed and executable in the browser.

Installation

Non-Python dependencies

HyMD installation requires a working MPI compiler. It is highly recommended to have MPI-enabled HDF5 and h5py for running parallel simulations with HyMD. Install both on Ubuntu with

sudo apt-get update -y
sudo apt-get install -y pkg-config libhdf5-mpi-dev libopenmpi-dev
python3 -m pip uninstall h5py  # Remove any serial h5py installation present
CC="mpicc" HDF5_MPI="ON" python3 -m pip install --no-binary=h5py h5py

Note There might be memory leaks if you use OpenMPI <= 4.1.1. See #186 for more details.

Python dependencies

Install HyMD with pip by

python3 -m pip install --upgrade numpy mpi4py cython
python3 -m pip install hymd

See HyMD docs for more information, including install steps for macOS and non-Debian linux distributions.

Run in docker

Alternatively, an up-to-date docker image is available from docker hub

docker pull mortele/hymd
docker run -it mortele/hymd
/app$ python3 -m pip install hymd
/app$
/app$ # Grab example input files
/app$ curl -O https://raw.githubusercontent.com/Cascella-Group-UiO/HyMD-tutorial/main/ideal_chain/ideal_chain.toml
/app$ curl -O https://raw.githubusercontent.com/Cascella-Group-UiO/HyMD-tutorial/main/ideal_chain/ideal_chain.HDF5
/app$
/app$ # Run simulation
/app$ python3 -m hymd ideal_chain.toml ideal_chain.HDF5 --verbose

Run tests

Clone the repository and run tests with pytest

git clone https://github.com/Cascella-Group-UiO/HyMD.git hymd
cd hymd
python3 -m pip install pytest pytest-mpi
pytest

Running MPI enabled pytest tests is simplified with a convenient script

chmod +x pytest-mpi
pytest-mpi -oo -n 2 -ns

References

[1] Milano, G.; Kawakatsu, T. Hybrid particle-field molecular dynamics simulations for dense polymer systems. J. Chem. Phys. 2009, 130, 214106.

[2] Bore, S. L.; Cascella, M. Hamiltonian and alias-free hybrid particle–field molecular dynamics. J. Chem. Phys. 2020, 153, 094106.

[3] Kolli, H. B.; De Nicola, A.; Bore, S. L.; Schäfer, K.; Diezemann, G.; Gauss, J.; Kawakatsu, T.;Lu, Z.-Y.; Zhu, Y.-L.; Milano, G.; Cascella, M. Hybrid Particle-Field Molecular DynamicsSimulations of Charged Amphiphiles in an Aqueous Environment. J. Chem. Theory Comput. 2018, 14, 4928–4937.

[4] Bore, S. L.; Milano, G.; Cascella, M. Hybrid Particle-Field Model for Conformational Dynamics of Peptide Chains. J. Chem. Theory Comput. 2018, 14, 1120–1130.

[5] Periole, X.; Cavalli, M.; Marrink, S. J.; Ceruso, M. A. Combining an elastic network with a coarse-grained molecular force field: structure, dynamics, and intermolecular recognition. J. Chem. Theory Comput. 2009, 5.9, 2531-2543.

[6] Pippig, M. PFFT: An extension of FFTW to massively parallel architectures. SIAM J. Sci. Comput. 2013, 35, C213–C236.

hymd's People

Contributors

hmcezar avatar mortele avatar rainwoodman avatar samiransen23 avatar sigbjobo avatar xinmeng2020 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.