Giter Club home page Giter Club logo

bayesianoptimization_practicalexamples's Introduction

Bayesian Optimization

In complex engineering problems we often come across parameters that have to be tuned using several time-consuming and noisy evaluations. When the number of parameters is not small or some of the parameters are continuous, using large factorial designs (e.g., “grid search”) or global optimization techniques for optimization require more evaluations than is practically feasible. These types of problems show up in a diversity of applications, such as

Tuning Internet service parameters and selection of weights for recommender systems, Hyperparameter optimization for machine learning, Finding optimal set of gait parameters for locomotive control in robotics, and Tuning design parameters and rule-of-thumb heuristics for hardware design. Bayesian optimization (BO) allows us to tune parameters in relatively few iterations by building a smooth model from an initial set of parameterizations (referred to as the "surrogate model") in order to predict the outcomes for as yet unexplored parameterizations. BO is an adaptive approach where the observations from previous evaluations are used to decide what parameterizations to evaluate next. The same strategy can be used to predict the expected gain from all future evaluations and decide on early termination, if the expected benefit is smaller than what is worthwhile for the problem at hand.

As you iterate over and over, the algorithm balances its needs of exploration and exploitation taking into account what it knows about the target function. At each step a Gaussian Process is fitted to the known samples (points previously explored), and the posterior distribution, combined with a exploration strategy (such as UCB (Upper Confidence Bound), or EI (Expected Improvement)), are used to determine the next point that should be explored. Formalizing Bayesian Optimization:

  1. We first choose a surrogate model for modeling the true function ff and define its prior.
  2. Given the set of observations (function evaluations), use Bayes rule to obtain the posterior.
  3. Use an acquisition function \alpha(x)α(x), which is a function of the posterior, to decide the next sample point x_t = \text{argmax}_x \alpha(x)
  4. Add newly sampled data to the set of observations and goto step #2 till convergence or budget elapses.

Tools:

Good Reads:

Exploitation vs Exploration:

Visualization:

Design of Experiments

Others:

bayesianoptimization_practicalexamples's People

Contributors

majid-mortazavi-siemens avatar mmortazavi avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.