Giter Club home page Giter Club logo

multinetx's Introduction

png multiNetX v1.0

multiNetX is a python package for the manipulation and visualization of multilayer networks. The core of this package is a MultilayerGraph, a class that inherits all properties from networkx.Graph().

This allows for:

  • Creating networks with weighted or unweighted links (only undirected networks are supported in this version)
  • Analysing the spectral properties of adjacency or Laplacian matrices
  • Visualizing dynamical processes by coloring the nodes and links accordingly

How to install multiNetX

multinetx does not need intallation. You simply download the source files and save them into your file system. Then you have to add that directory to your PYTHONPATH. In Unix/Linux you can do this by writting in the terminal the following command:

export PYTHONPATH=path_to_your_python_libraries/multinetx:$PYTHONPATH

How to use multiNetX

Import standard libraries for numerics

import numpy as np

Import the package MultiNetX

import multinetx as mx

Create a multiplex 1st way

Create three Erd"os- R'enyi networks with N nodes for each layer

N = 5
g1 = mx.generators.erdos_renyi_graph(N,0.5,seed=218)
g2 = mx.generators.erdos_renyi_graph(N,0.6,seed=211)
g3 = mx.generators.erdos_renyi_graph(N,0.7,seed=208)

Create an 3Nx3N lil sparse matrix. It will be used to describe the layers interconnection

adj_block = mx.lil_matrix(np.zeros((N*3,N*3)))

Define the type of interconnection among the layers (here we use identity matrices thus connecting one-to-one the nodes among layers)

adj_block[0:  N,  N:2*N] = np.identity(N)    # L_12
adj_block[0:  N,2*N:3*N] = np.identity(N)    # L_13
adj_block[N:2*N,2*N:3*N] = np.identity(N)    # L_23
    
# use symmetric inter-adjacency matrix
adj_block += adj_block.T

Create an instance of the MultilayerGraph class

mg = mx.MultilayerGraph(list_of_layers=[g1,g2,g3],
                        inter_adjacency_matrix=adj_block)

Weights can be added to the edges

mg.set_edges_weights(intra_layer_edges_weight=2,
                     inter_layer_edges_weight=3)

Create a multiplex 2nd way

mg = mx.MultilayerGraph()

Add layers

mg.add_layer(mx.generators.erdos_renyi_graph(N,0.5,seed=218))
mg.add_layer(mx.generators.erdos_renyi_graph(N,0.6,seed=211))
mg.add_layer(mx.generators.erdos_renyi_graph(N,0.7,seed=208))

Create an instance of the MultilayerGraph class

mg.layers_interconnect(inter_adjacency_matrix=adj_block)

Weights can be added to the edges

mg.set_edges_weights(intra_layer_edges_weight=2,
                     inter_layer_edges_weight=3)

The object mg inherits all properties from Graph of networkX, so that we can calculate adjacency or Laplacian matrices, their eigenvalues, etc.

How to plot multiplex networks

Import standard libraries
import numpy as np
import matplotlib.pyplot as plt
Import the package MultiNetX
import multinetx as mx
Create three Erd"os- R'enyi networks with N nodes for each layer
N = 50
g1 = mx.erdos_renyi_graph(N,0.07,seed=218)
g2 = mx.erdos_renyi_graph(N,0.07,seed=211)
g3 = mx.erdos_renyi_graph(N,0.07,seed=208)

Edge colored nertwork (no inter-connected layers)

Create the multiplex network
mg = mx.MultilayerGraph(list_of_layers=[g1,g2,g3])
Set weights to the edges
mg.set_intra_edges_weights(layer=0,weight=1)
mg.set_intra_edges_weights(layer=1,weight=2)
mg.set_intra_edges_weights(layer=2,weight=3)
Plot the adjacency matrix and the multiplex networks
fig = plt.figure(figsize=(15,5))
ax1 = fig.add_subplot(121)
ax1.imshow(mx.adjacency_matrix(mg,weight='weight').todense(),
		  origin='upper',interpolation='nearest',cmap=plt.cm.jet_r)
ax1.set_title('supra adjacency matrix')

ax2 = fig.add_subplot(122)
ax2.axis('off')
ax2.set_title('edge colored network')
pos = mx.get_position(mg,mx.fruchterman_reingold_layout(g1),
					  layer_vertical_shift=0.2,
					  layer_horizontal_shift=0.0,
					  proj_angle=47)
mx.draw_networkx(mg,pos=pos,ax=ax2,node_size=50,with_labels=False,
				 edge_color=[mg[a][b]['weight'] for a,b in mg.edges()],
				 edge_cmap=plt.cm.jet_r)
plt.show()

png

Regular interconnected multiplex

Define the type of interconnection between the layers
adj_block = mx.lil_matrix(np.zeros((N*3,N*3)))

adj_block[0:  N,  N:2*N] = np.identity(N)    # L_12
adj_block[0:  N,2*N:3*N] = np.identity(N)    # L_13
#adj_block[N:2*N,2*N:3*N] = np.identity(N)    # L_23
adj_block += adj_block.T
Create an instance of the MultilayerGraph class
mg = mx.MultilayerGraph(list_of_layers=[g1,g2,g3], 
						inter_adjacency_matrix=adj_block)

mg.set_edges_weights(inter_layer_edges_weight=4)

mg.set_intra_edges_weights(layer=0,weight=1)
mg.set_intra_edges_weights(layer=1,weight=2)
mg.set_intra_edges_weights(layer=2,weight=3)
Plot the adjacency matrix and the multiplex networks
fig = plt.figure(figsize=(15,5))
ax1 = fig.add_subplot(121)
ax1.imshow(mx.adjacency_matrix(mg,weight='weight').todense(),
		  origin='upper',interpolation='nearest',cmap=plt.cm.jet_r)
ax1.set_title('supra adjacency matrix')

ax2 = fig.add_subplot(122)
ax2.axis('off')
ax2.set_title('regular interconnected network')
pos = mx.get_position(mg,mx.fruchterman_reingold_layout(mg.get_layer(0)),
					  layer_vertical_shift=1.4,
					  layer_horizontal_shift=0.0,
					  proj_angle=7)
mx.draw_networkx(mg,pos=pos,ax=ax2,node_size=50,with_labels=False,
				 edge_color=[mg[a][b]['weight'] for a,b in mg.edges()],
				 edge_cmap=plt.cm.jet_r)
plt.show()

png

General multiplex multiplex

Define the type of interconnection between the layers
adj_block = mx.lil_matrix(np.zeros((N*4,N*4)))

adj_block[0  :  N ,   N:2*N] = np.identity(N)   # L_12
adj_block[0  :  N , 2*N:3*N] = np.random.poisson(0.005,size=(N,N))   # L_13
adj_block[0  :  N , 3*N:4*N] = np.random.poisson(0.006,size=(N,N))   # L_34
adj_block[3*N:4*N , 2*N:3*N] = np.random.poisson(0.008,size=(N,N))   # L_14
adj_block += adj_block.T
adj_block[adj_block>1] = 1
Create an instance of the MultilayerGraph class
mg = mx.MultilayerGraph(list_of_layers=[g1,g2,g3,g1],
						inter_adjacency_matrix=adj_block)

mg.set_edges_weights(inter_layer_edges_weight=5)

mg.set_intra_edges_weights(layer=0,weight=1)
mg.set_intra_edges_weights(layer=1,weight=2)
mg.set_intra_edges_weights(layer=2,weight=3)
mg.set_intra_edges_weights(layer=3,weight=4)
Plot the adjacency matrix and the multiplex networks
fig = plt.figure(figsize=(15,5))
ax1 = fig.add_subplot(121)
ax1.imshow(mx.adjacency_matrix(mg,weight='weight').todense(),
		  origin='upper',interpolation='nearest',cmap=plt.cm.jet_r)
ax1.set_title('supra adjacency matrix')

ax2 = fig.add_subplot(122)
ax2.axis('off')
ax2.set_title('general multiplex network')
pos = mx.get_position(mg,mx.fruchterman_reingold_layout(mg.get_layer(0)),
					  layer_vertical_shift=.3,
					  layer_horizontal_shift=0.9,
					  proj_angle=.2)
mx.draw_networkx(mg,pos=pos,ax=ax2,node_size=50,with_labels=False,
				 edge_color=[mg[a][b]['weight'] for a,b in mg.edges()],
				 edge_cmap=plt.cm.jet_r)
plt.show()

png

Copyright

(C) Copyright 2013-2015, Nikos E Kouvaris

Each file in this folder is part of the multiNetX package.

multiNetX is part of the deliverables of the LASAGNE project (multi-LAyer SpAtiotemporal Generalized NEtworks), EU/FP7-2012-STREP-318132 (http://complex.ffn.ub.es/~lasagne/)

multiNetX is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

multiNetX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

multinetx's People

Contributors

nkoub avatar

Watchers

James Cloos avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.