Giter Club home page Giter Club logo

dnne's Introduction

Native Exports for .NET

Prototype for a .NET managed assembly to expose a native export.

This work is inspired by work in the Xamarin, CoreRT, and DllExport projects.

Requirements

Minimum

DNNE NuPkg Requirements

Windows:

  • Visual Studio 2015 or greater.
    • The x86_64 version of the .NET runtime is the default install.
    • In order to target x86, the x86 .NET runtime must be explicitly installed.
  • Windows 10 SDK - Installed with Visual Studio.
  • x86, x86_64, ARM64 compilation supported.
    • The Visual Studio package containing the desired compiler architecture must have been installed.

macOS:

  • clang compiler on the path.
  • Current platform and environment paths dictate native compilation support.

Linux:

  • clang compiler on the path.
  • Current platform and environment paths dictate native compilation support.

Exporting details

  • The exported function must be marked static and public. Note that enclosing class accessibility has no impact on exporting.

  • Mark functions to export with UnmanagedCallersOnlyAttribute.

    public class Exports
    {
        [UnmanagedCallersOnlyAttribute(EntryPoint = "FancyName")]
        public static int MyExport(int a)
        {
            return a;
        }
    }
  • The manner in which native exports are exposed is largely a function of the compiler being used. On the Windows platform an option exists to provide a .def file that permits customization of native exports. Users can provide a path to a .def file using the DnneWindowsExportsDef MSBuild property. Note that if a .def file is provided no user functions will be exported by default.

Native API

The native API is defined in src/platform/dnne.h.

The DNNE_ASSEMBLY_NAME must be set during compilation to indicate the name of the managed assembly to load. The assembly name should not include the extension. For example, if the managed assembly on disk is called ClassLib.dll, the expected assembly name is ClassLib.

The following defines are set based on the target OS platform:

  • DNNE_WINDOWS
  • DNNE_OSX
  • DNNE_LINUX
  • DNNE_FREEBSD

The generated source will need to be linked against the nethost library as either a static lib (libnethost.[lib|a]) or dynamic/shared library (nethost.lib). If the latter linking is performed, the nethost.[dll|so|dylib] will need to be deployed with the export binary or be on the path at run time.

The set_failure_callback() function can be used prior to calling an export to set a callback in the event runtime load or export discovery fails.

Failure to load the runtime or find an export results in the native library calling abort(). See FAQs for how this can be overridden.

The preload_runtime() function can be used to preload the runtime. This may be desirable prior to calling an export to avoid the cost of loading the runtime during the first export dispatch.

Exporting a managed function

  1. Adorn the desired managed function with UnmanagedCallersOnlyAttribute.

    • Optionally set the EntryPoint property to indicate the name of the native export. See below for discussion of influence by calling convention.
    • If the EntryPoint property is null, the name of the mananged function is used. This default name will not include the namespace or class containing the function.
    • User supplied values in EntryPoint will not be modified or validated in any manner. This string will be consume by a C compiler and should therefore adhere to the C language's restrictions on function names.
    • On the x86 platform only, multiple calling conventions exist and these often influence exported symbols. For example, see MSVC C export decoration documentation. DNNE does not attempt to mitigate symbol decoration - even through EntryPoint. If the consuming application requires a specific export symbol and calling convention that is decorated in a customized way, it is recommended to manually compile the generated source - see DnneBuildExports - or if on Windows supply a .def file - see DnneWindowsExportsDef. Typically, setting the calling convention to cdecl for the export will address issues on any x86 platform.
      [UnmanagedCallersOnly(CallConvs = new []{typeof(System.Runtime.CompilerServices.CallConvCdecl)})]
  2. Set the <EnableDynamicLoading>true</EnableDynamicLoading> property in the managed project containing the methods to export. This will produce a *.runtimeconfig.json that is needed to activate the runtime during export dispatch.

Native code customization

The mapping of .NET types to their native representation is addressed by the concept of blittability. This approach however limits what can be expressed by the managed type signature when being called from an unmanaged context. For example, there is no way for DNNE to know how it should describe the following C struct in C# without being enriched with knowledge of how to construct marshallable types.

struct some_data
{
    char* str;
    union
    {
        short s;
        double d;
    } data;
};

The following attributes can be used to enable the above scenario. They must be defined by the project in order to be used - DNNE provides no assembly to reference. Refer to ExportingAssembly for an example.

namespace DNNE
{
    /// <summary>
    /// Provide C code to be defined early in the generated C header file.
    /// </summary>
    /// <remarks>
    /// This attribute is respected on an exported method declaration or on a parameter for the method.
    /// The following header files will be included prior to the code being defined.
    ///   - stddef.h
    ///   - stdint.h
    ///   - dnne.h
    /// </remarks>
    internal class C99DeclCodeAttribute : System.Attribute
    {
        public C99DeclCodeAttribute(string code) { }
    }

    /// <summary>
    /// Define the C type to be used.
    /// </summary>
    /// <remarks>
    /// The level of indirection should be included in the supplied string.
    /// </remarks>
    internal class C99TypeAttribute : System.Attribute
    {
        public C99TypeAttribute(string code) { }
    }
}

The above attributes can be used to manually define the native type mapping to be used in the export definition. For example:

public unsafe static class NativeExports
{
    public struct Data
    {
        public int a;
        public int b;
        public int c;
    }

    [UnmanagedCallersOnly]
    [DNNE.C99DeclCode("struct T{int a; int b; int c;};")]
    public static int ReturnDataCMember([DNNE.C99Type("struct T")] Data d)
    {
        return d.c;
    }

    [UnmanagedCallersOnly]
    public static int ReturnRefDataCMember([DNNE.C99Type("struct T*")] Data* d)
    {
        return d->c;
    }
}

In addition to providing declaration code directly, users can also supply #include directives for application specific headers. The DnneAdditionalIncludeDirectories MSBuild property can be used to supply search paths in these cases. Consider the following use of the DNNE.C99DeclCode attribute.

[DNNE.C99DeclCode("#include <fancyapp.h>")]

Generating a native binary using the DNNE NuPkg

  1. The DNNE NuPkg is published on NuGet.org, but can also be built locally.

    • Build the DNNE NuPkg locally by building create_package.proj.

      > dotnet build create_package.proj

  2. Add the NuPkg to the target managed project.

    • See DNNE.props for the MSBuild properties used to configure the build process.

    • If NuPkg was built locally, remember to update the project's nuget.config to point at the local location of the recently built DNNE NuPkg.

    <ItemGroup>
      <PackageReference Include="DNNE" Version="1.*" />
    </ItemGroup>
  3. Build the managed project to generate the native binary. The native binary will have a NE suffix and the system extension for dynamic/shared native libraries (i.e., .dll, .so, .dylib).

    • The Runtime Identifier (RID) is used to target a specific SDK.
    • For example, on Windows the --runtime flag or MSBuild RuntimeIdentifier property can be used to target win-x86 or win-x64.
    • The name of the native binary can be supplied by setting the MSBuild property DnneNativeBinaryName. It is incumbent on the setter of this property that it doesn't collide with the name of the managed assembly. Practially, this only impacts the Windows platform because managed and native binaries share the same extension (i.e., .dll).
    • A header file containing the exports will be placed in the output directory. The dnne.h will also be placed in the output directory.
    • On Windows an import library (.lib) will be placed in the output directory.
  4. Deploy the native binary, managed assembly and associated *.json files for consumption from a native process.

    • Although not technically needed, the exports header and import library (Windows only) can be deployed with the native binary to make consumption easier.
    • Set the DnneAddGeneratedBinaryToProject MSBuild property to true in the project if it is desired to have the generated native binary flow with project references. Recall that the generated binary is bitness specific.

Generate manually

  1. Run the dnne-gen tool on the managed assembly.

  2. Take the generated source from dnne-gen and the DNNE platform source to compile a native binary with the desired native exports. See the Native API section for build details.

  3. Deploy the native binary, managed assembly and associated *.json files for consumption from a native process.

Experimental attribute

There are scenarios where updating UnmanagedCallersOnlyAttribute may take time. In order to enable independent development and experimentation, the DNNE.ExportAttribute is also respected. This type can be modified to suit one's needs and dnne-gen updated to respect those changes at code gen time. The user should define the following in their assembly. They can then modify the attribute and dnne-gen as needed.

namespace DNNE
{
    internal class ExportAttribute : Attribute
    {
        public ExportAttribute() { }
        public string EntryPoint { get; set; }
    }
}

The calling convention of the export will be the default for the .NET runtime on that platform. See the description of CallingConvention.Winapi.

Using DNNE.ExportAttribute to export a method requires a Delegate of the appropriate type and name to be at the same scope as the export. The naming convention is <METHODNAME>Delegate. For example:

public class Exports
{
    public delegate int MyExportDelegate(int a);

    [DNNE.Export(EntryPoint = "FancyName")]
    public static int MyExport(int a)
    {
        return a;
    }
}

FAQs

  • I am not using one of the supported compilers and hitting an issue of missing intptr_t type, what can I do?
    • The C99 specification indicates several types like intptr_t and uintptr_t are optional. It is recommended to override the computed type using DNNE.C99TypeAttribute. For example, [DNNE.C99Type("void*")] can be used to override an instance where intptr_t is generated by DNNE.
  • How can I use the same export name across platforms but with different implementations?
  • The consuming application for my .NET assembly fails catastrophically if .NET is not installed. How can I improve this UX?
    • For all non-recoverable scenarios, DNNE will call the standard C abort() function. This can be overridden by providing your own dnne_abort() function. See override.c in the ExportingAssembly project for an example.

Additional References

dotnet repo

nethost example

dnne's People

Contributors

aaronrobinsonmsft avatar danmoseley avatar executor-cheng avatar jkoritzinsky avatar jkotas avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.