Giter Club home page Giter Club logo

mid360_simulation_plugin's Introduction

Mid360_simulation_plugin

Plugin for the simulation of the Livox Mid-360 based on the official plugin

Main changes:

  • Support for ROS Noetic
  • Support for Gazebo 11
  • Standalone
    • No need to install the livox ros driver
    • No need to install the livox sdk
  • Support for custom message formats
  • Corrected the distortion of the point cloud

plot

On the left you can see the point cloud generated by the original plugin, on the right the point cloud generated by this plugin. The distortion is clearly visible in the left image.

Build instructions

Tested on

OS COMPILER Cmake version
Ubuntu 20.04 GCC >= 9.4 > 3.16.3
  1. Clone this repo into your catkin workspace src folder.
cd ~/catkin_ws/src
git clone https://github.com/fratopa/Mid360_simulation_plugin.git
  1. Build the plugin.
cd ~/catkin_ws
source opt/ros/noetic/setup.bash
catkin build -DCMAKE_BUILD_TYPE=Release

Usage instructions

To add the plugin to your robot model add the following lines to your sdf file create a link and then attach the sensor to the link as such:

<sensor type="ray" name="laser_livox">
        <pose>0 0 0.0 0 0 0</pose>
        <visualize>true</visualize>
        <always_on>True</always_on>
        <update_rate>10</update_rate>
        <!-- This ray plgin is only for visualization. -->
        <plugin name="gazebo_ros_laser_controller" filename="liblivox_laser_simulation.so">
			  <ray>
			  <scan>
				  <horizontal>
				    <samples>100</samples>
				    <resolution>1</resolution>
				    <min_angle>-3.1415926535897931</min_angle>
            <max_angle>3.1415926535897931</max_angle>
				  </horizontal>
				  <vertical>
				    <samples>50</samples>
				    <resolution>1</resolution>
				    <min_angle>-3.1415926535897931</min_angle>
            <max_angle>3.1415926535897931</max_angle>
				  </vertical>
			  </scan>
			  <range>
				  <min>0.1</min>
				  <max>40</max>
				  <resolution>1</resolution>
			  </range>
			  <noise>
				  <type>gaussian</type>
				  <mean>0.0</mean>
				  <stddev>0.0</stddev>
			  </noise>
			  </ray>
          <visualize>True</visualize>
		      <samples>20000</samples>
		      <downsample>1</downsample>
		      <csv_file_name>mid360-real-centr.csv</csv_file_name>
          <publish_pointcloud_type>2</publish_pointcloud_type>
		      <ros_topic>/livox/lidar</ros_topic>
          <frameName>base_link</frameName>
        </plugin>
      </sensor>

Parameters

The main parameters you may want to change are:

  • visualize: If set to true the plugin will visualize the laser in gazebo, this is usefull for debugging but you may consider turning this off to improve performances.
  • downsample: The higher the downsample factor the fewer points will be generated. this parameter can be usefull to reduce the computational load of the simulation.
  • publish_pointcloud_type: This changes the format in which the pointcloud will be published:
    • 0: The pointcloud will be published as a sensor_msgs::PointCloud message
    • 1: The pointcloud will be published as a sensor_msgs::pointcloud2 message with fields x, y, z
    • 2 (default): The pointcloud will be published as a sensor_msgs::pointcloud2 message with fields x, y, z, intensity, tag, line.
    • 3: The pointcloud will be published in the Livox custom message format.
    offset_time: 
    x: 
    y: 
    z: 
    reflectivity: 
    tag: 
    line: 
    
    

Run instructions

To verify that the plugin is working correctly you can run the minimal example:

source ~/catkin_ws/devel/setup.bash
roslaunch livox_laser_simulation test_pattern.launch

This will launch the plugin with a test pattern. You should see a point cloud in RViz and a gazebo window with a spinning laser.

Citation

If you use this plugin in your research, please cite the following paper:

@Article{isprs-archives-XLVIII-1-W1-2023-539-2023,
AUTHOR = {Vultaggio, F. and d'Apolito, F. and Sulzbachner, C. and Fanta-Jende, P.},
TITLE = {SIMULATION OF LOW-COST MEMS-LIDAR AND ANALYSIS OF ITS EFFECT ON THE PERFORMANCES OF STATE-OF-THE-ART SLAMS},
JOURNAL = {The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
VOLUME = {XLVIII-1/W1-2023},
YEAR = {2023},
PAGES = {539--545},
URL = {https://isprs-archives.copernicus.org/articles/XLVIII-1-W1-2023/539/2023/},
DOI = {10.5194/isprs-archives-XLVIII-1-W1-2023-539-2023}
}

mid360_simulation_plugin's People

Contributors

fratopa avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.