Giter Club home page Giter Club logo

prt's Introduction

Mustafa Ray Portofolio

You can use the editor on GitHub to maintain and preview the content for your website in Markdown files.

Whenever you commit to this repository, GitHub Pages will run Jekyll to rebuild the pages in your site, from the content in your Markdown files.

Markdown

Markdown is a lightweight and easy-to-use syntax for styling your writing. It includes conventions for

Syntax highlighted code block

# Header 1
## Header 2
### Header 3

{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Homework 3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Part 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "%matplotlib inline\n",
    "plt.rcParams[\"figure.dpi\"] = 300\n",
    "plt.rcParams['savefig.bbox'] = 'tight'"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.svm import SVC\n",
    "from sklearn.datasets import load_breast_cancer\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import MinMaxScaler"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# load and split the data\n",
    "cancer = load_breast_cancer()\n",
    "\n",
    "X_train, X_test, y_train, y_test = train_test_split(\n",
    "cancer.data, cancer.target, random_state=0)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test score: 0.95\n"
     ]
    }
   ],
   "source": [
    "# compute minimum and maximum on the training data\n",
    "scaler = MinMaxScaler().fit(X_train)\n",
    "\n",
    "# rescale the training data\n",
    "X_train_scaled = scaler.transform(X_train)\n",
    "\n",
    "svm = SVC(gamma = 'auto' )\n",
    "\n",
    "# learn an SVM on the scaled training data\n",
    "svm.fit(X_train_scaled, y_train)\n",
    "\n",
    "# scale the test data and score the scaled data\n",
    "X_test_scaled = scaler.transform(X_test)\n",
    "print(\"Test score: {:.2f}\".format(svm.score(X_test_scaled, y_test)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2- Building Pipelines"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.pipeline import Pipeline\n",
    "pipe = Pipeline([(\"scaler\", MinMaxScaler()), (\"svm\", SVC(gamma = 'auto'))])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Pipeline(memory=None,\n",
       "     steps=[('scaler', MinMaxScaler(copy=True, feature_range=(0, 1))), ('svm', SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,\n",
       "  decision_function_shape='ovr', degree=3, gamma='auto', kernel='rbf',\n",
       "  max_iter=-1, probability=False, random_state=None, shrinking=True,\n",
       "  tol=0.001, verbose=False))])"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipe.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Test score: 0.95\n"
     ]
    }
   ],
   "source": [
    "print(\"Test score: {:.2f}\".format(pipe.score(X_test, y_test)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3- Using Pipelines in Grid Searches (SVM)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.model_selection import GridSearchCV\n",
    "\n",
    "param_grid = {'svm__C': [0.001, 0.01, 0.1, 1, 10, 100],\n",
    "'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Best cross-validation accuracy: 0.98\n",
      "Test set score: 0.97\n",
      "Best parameters: {'svm__C': 1, 'svm__gamma': 1}\n"
     ]
    }
   ],
   "source": [
    "grid = GridSearchCV(pipe, param_grid=param_grid, cv=5)\n",
    "grid.fit(X_train, y_train)\n",
    "print(\"Best cross-validation accuracy: {:.2f}\".format(grid.best_score_))\n",
    "print(\"Test set score: {:.2f}\".format(grid.score(X_test, y_test)))\n",
    "print(\"Best parameters: {}\".format(grid.best_params_))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "4- Using Pipelines in Grid Searches (Logistic Regression)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.preprocessing import StandardScaler\n",
    "from sklearn.pipeline import make_pipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "pipe = make_pipeline(StandardScaler(), LogisticRegression(solver ='lbfgs', max_iter=300))\n",
    "param_grid = {'logisticregression__C': [0.01, 0.1, 1, 10, 100]}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "GridSearchCV(cv=5, error_score='raise-deprecating',\n",
       "       estimator=Pipeline(memory=None,\n",
       "     steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('logisticregression', LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n",
       "          intercept_scaling=1, max_iter=300, multi_class='warn',\n",
       "          n_jobs=None, penalty='l2', random_state=None, solver='lbfgs',\n",
       "          tol=0.0001, verbose=0, warm_start=False))]),\n",
       "       fit_params=None, iid='warn', n_jobs=None,\n",
       "       param_grid={'logisticregression__C': [0.01, 0.1, 1, 10, 100]},\n",
       "       pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',\n",
       "       scoring=None, verbose=0)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train, X_test, y_train, y_test = train_test_split(\n",
    "cancer.data, cancer.target, random_state=4)\n",
    "grid = GridSearchCV(pipe, param_grid, cv=5)\n",
    "grid.fit(X_train, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Best estimator:\n",
      "Pipeline(memory=None,\n",
      "     steps=[('standardscaler', StandardScaler(copy=True, with_mean=True, with_std=True)), ('logisticregression', LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,\n",
      "          intercept_scaling=1, max_iter=300, multi_class='warn',\n",
      "          n_jobs=None, penalty='l2', random_state=None, solver='lbfgs',\n",
      "          tol=0.0001, verbose=0, warm_start=False))])\n"
     ]
    }
   ],
   "source": [
    "print(\"Best estimator:\\n{}\".format(grid.best_estimator_))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Logistic regression step:\n",
      "LogisticRegression(C=0.1, class_weight=None, dual=False, fit_intercept=True,\n",
      "          intercept_scaling=1, max_iter=300, multi_class='warn',\n",
      "          n_jobs=None, penalty='l2', random_state=None, solver='lbfgs',\n",
      "          tol=0.0001, verbose=0, warm_start=False)\n"
     ]
    }
   ],
   "source": [
    "print(\"Logistic regression step:\\n{}\".format(\n",
    "grid.best_estimator_.named_steps[\"logisticregression\"]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Logistic regression coefficients:\n",
      "[[-0.3914328  -0.38953715 -0.37739194 -0.38182177 -0.12563881  0.01490745\n",
      "  -0.33765699 -0.3786831  -0.05131844  0.22879421 -0.47627084  0.00635852\n",
      "  -0.35037191 -0.35459504 -0.0298673   0.19405433 -0.0047329  -0.07769192\n",
      "   0.23537054  0.23109142 -0.54040153 -0.53565333 -0.49172645 -0.48874024\n",
      "  -0.39106171 -0.12979023 -0.39291414 -0.42404076 -0.33022024 -0.13611277]]\n"
     ]
    }
   ],
   "source": [
    "print(\"Logistic regression coefficients:\\n{}\".format(\n",
    "grid.best_estimator_.named_steps[\"logisticregression\"].coef_))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Best cross-validation accuracy: 0.97\n",
      "Test set score: 0.97\n",
      "Best parameters: {'logisticregression__C': 0.1}\n"
     ]
    }
   ],
   "source": [
    "grid.fit(X_train, y_train)\n",
    "print(\"Best cross-validation accuracy: {:.2f}\".format(grid.best_score_))\n",
    "print(\"Test set score: {:.2f}\".format(grid.score(X_test, y_test)))\n",
    "print(\"Best parameters: {}\".format(grid.best_params_))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}

**Bold** and _Italic_ and `Code` text

[Link](url) and ![Image](src)

For more details see GitHub Flavored Markdown.

Jekyll Themes

Your Pages site will use the layout and styles from the Jekyll theme you have selected in your repository settings. The name of this theme is saved in the Jekyll _config.yml configuration file.

Support or Contact

Having trouble with Pages? Check out our documentation or contact support and we’ll help you sort it out.

prt's People

Contributors

kochatice avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.