Giter Club home page Giter Club logo

panorama_stitching's People

Contributors

doriyaspielman avatar kineruth avatar levidworkin avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar

Forkers

chetanath

panorama_stitching's Issues

list index out of range

after updating this line to make it work with openCV4 :
stitcher = cv2.createStitcher()
with
stitcher = cv2.Stitcher_create()

(venv) aya@MacBook-Pro-16 src % python myPanorama.py
len(hpair) = 3 m=1
len(hpair) = 3 m=1
len(hpair) = 0 m=-1
Traceback (most recent call last):
File "myPanorama.py", line 127, in
main()
File "myPanorama.py", line 122, in main
generatePanoramaExamples()
File "myPanorama.py", line 83, in generatePanoramaExamples
Htot = accumulateHomographies(homography_list, m)
File "/Users/aya/GIT/Panorama_Stitching/src/panoramaStitching.py", line 60, in accumulateHomographies
H_im = np.linalg.inv(Hpair[m])
IndexError: list index out of range

I added this line print(f"len(hpair) = {len(Hpair)} m={m}")
just before H_im = np.linalg.inv(Hpair[m])

Panorama from multiple images

I want to create a panorama from a video by splitting it into frames and then stitch them using the conventional method of finding features.

This is my code for reference

import cv2
import numpy as np
import glob
import imutils


def draw_matches(img1, keypoints1, img2, keypoints2, matches):
    r, c = img1.shape[:2]
    r1, c1 = img2.shape[:2]

    # Create a blank image with the size of the first image + second image
    output_img = np.zeros((max([r, r1]), c + c1, 3), dtype='uint8')
    output_img[:r, :c, :] = np.dstack([img1])
    output_img[:r1, c:c + c1, :] = np.dstack([img2])

    # Go over all of the matching points and extract them
    for match in matches:
        img1_idx = match.queryIdx
        img2_idx = match.trainIdx
        (x1, y1) = keypoints1[img1_idx].pt
        (x2, y2) = keypoints2[img2_idx].pt

        # Draw circles on the keypoints
        cv2.circle(output_img, (int(x1), int(y1)), 4, (0, 255, 255), 1)
        cv2.circle(output_img, (int(x2) + c, int(y2)), 4, (0, 255, 255), 1)

        # Connect the same keypoints
        cv2.line(output_img, (int(x1), int(y1)), (int(x2) + c, int(y2)), (0, 255, 255), 1)

    return output_img


def warpImages(img1, img2, H):
    rows1, cols1 = img1.shape[:2]
    rows2, cols2 = img2.shape[:2]

    list_of_points_1 = np.float32([[0, 0], [0, rows1], [cols1, rows1], [cols1, 0]]).reshape(-1, 1, 2)
    temp_points = np.float32([[0, 0], [0, rows2], [cols2, rows2], [cols2, 0]]).reshape(-1, 1, 2)

    # When we have established a homography we need to warp perspective
    # Change field of view
    list_of_points_2 = cv2.perspectiveTransform(temp_points, H)

    list_of_points = np.concatenate((list_of_points_1, list_of_points_2), axis=0)

    [x_min, y_min] = np.int32(list_of_points.min(axis=0).ravel() - 0.5)
    [x_max, y_max] = np.int32(list_of_points.max(axis=0).ravel() + 0.5)

    translation_dist = [-x_min, -y_min]

    H_translation = np.array([[1, 0, translation_dist[0]], [0, 1, translation_dist[1]], [0, 0, 1]])

    output_img = cv2.warpPerspective(img2, H_translation.dot(H), (x_max - x_min, y_max - y_min))
    output_img[translation_dist[1]:rows1 + translation_dist[1], translation_dist[0]:cols1 + translation_dist[0]] = img1
    # print(output_img)

    return output_img


# Main program starts here


input_path = "/Users/akshayacharya/Desktop/Panorama/Bazinga/Test images for final/Highfps/*.jpg"
output_path = "Output/o4.jpg"
#input_path = "/Users/akshayacharya/Desktop/Panorama/Bazinga/Output/*.jpg"
#output_path = "Output/final.jpg"


input_img = glob.glob(input_path)
img_path = sorted(input_img)
print(img_path)
tmp = img_path[0]
flag = True

for i in range(1, len(img_path)):
    if flag:
        img1 = cv2.imread(tmp, cv2.COLOR_BGR2GRAY)
        img2 = cv2.imread(img_path[i], cv2.COLOR_BGR2GRAY)
        flag = False
    img1 = cv2.resize(img1, (1080, 720), fx=1, fy=1)
    img2 = cv2.imread(img_path[i], cv2.COLOR_BGR2GRAY)
    img2 = cv2.resize(img2, (1080, 720), fx=1, fy=1)

    orb = cv2.ORB_create(nfeatures=2000)

    keypoints1, descriptors1 = orb.detectAndCompute(img1, None)
    keypoints2, descriptors2 = orb.detectAndCompute(img2, None)

    # cv2.imshow('1',cv2.drawKeypoints(img1, keypoints1, None, (255, 0, 255)))
    # cv2.imshow('2',cv2.drawKeypoints(img2, keypoints2, None, (255,255, 255)))
    # cv2.waitKey(0)

    # Create a BFMatcher object.
    # It will find all of the matching keypoints on two images
    bf = cv2.BFMatcher_create(cv2.NORM_HAMMING)

    # Find matching points
    matches = bf.knnMatch(descriptors1, descriptors2, k=2)

    # print("Descriptor of the first keypoint: ")
    # print(descriptors1[0])
    # print(type(matches))

    all_matches = []
    for m, n in matches:
        all_matches.append(m)

    img3 = draw_matches(img1, keypoints1, img2, keypoints2, all_matches[:])
    # v2.imshow('Matches',img3)
    # cv2.waitKey(0)

    # Finding the best matches
    good = []
    for m, n in matches:
        if m.distance < 0.9 * n.distance:
            good.append(m)

    # cv2.imshow('Final1',cv2.drawKeypoints(img1, [keypoints1[m.queryIdx] for m in good], None, (255, 0, 255)))
    # cv2.imshow('Final2',cv2.drawKeypoints(img2, [keypoints2[m.queryIdx] for m in good], None, (255, 0, 255)))
    # cv2.waitKey(0)

    MIN_MATCH_COUNT = 10

    if len(good) > MIN_MATCH_COUNT:
        # Convert keypoints to an argument for findHomography
        src_pts = np.float32([keypoints1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
        dst_pts = np.float32([keypoints2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)

        # Establish a homography
        M, _ = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)

        result = warpImages(img2, img1, M)
        img1 = result
        print(f"Succesfully stitched until image{i + 1}")

#writeStatus = cv2.imwrite(output_path, result)
#if writeStatus is True:
#    print("image written")
#else:
#    print("problem")  # or raise exception, handle problem, etc.
#result = cv2.resize(result)
cv2.imshow("Hi", result)
cv2.waitKey(0)
#writeStatus = cv2.imwrite(output_path, result)



stitched = img1
stitched = cv2.copyMakeBorder(stitched, 10, 10, 10, 10,
                              cv2.BORDER_CONSTANT, (0, 0, 0))
# convert the stitched image to grayscale and threshold it
# such that all pixels greater than zero are set to 255
# (foreground) while all others remain 0 (background)
gray = cv2.cvtColor(stitched, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)[1]
# find all external contours in the threshold image then find
# the *largest* contour which will be the contour/outline of
# the stitched image
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                        cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
# allocate memory for the mask which will contain the
# rectangular bounding box of the stitched image region
mask = np.zeros(thresh.shape, dtype="uint8")
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1)
# create two copies of the mask: one to serve as our actual
# minimum rectangular region and another to serve as a counter
# for how many pixels need to be removed to form the minimum
# rectangular region
minRect = mask.copy()
sub = mask.copy()
# keep looping until there are no non-zero pixels left in the
# subtracted image
while cv2.countNonZero(sub) > 0:
    # erode the minimum rectangular mask and then subtract
    # the thresholded image from the minimum rectangular mask
    # so we can count if there are any non-zero pixels left
    minRect = cv2.erode(minRect, None)
    sub = cv2.subtract(minRect, thresh)
# find contours in the minimum rectangular mask and then
# extract the bounding box (x, y)-coordinates
cnts = cv2.findContours(minRect.copy(), cv2.RETR_EXTERNAL,
                        cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
c = max(cnts, key=cv2.contourArea)
(x, y, w, h) = cv2.boundingRect(c)
# use the bounding box coordinates to extract the our final
# stitched image
stitched = stitched[y:y + h, x:x + w]
#cv2.imwrite("cropped.jpg", stitched)
#writeStatus = cv2.imwrite(output_path, stitched)
#if writeStatus is True:
#    print("image written")
#else:
#    print("problem")  # or raise exception, handle problem, etc.
stitched = cv2.resize(stitched, (2000,1500))
cv2.imshow("cropped", stitched)
cv2.waitKey(0)

However, its not giving me the right output. I have attached the image for reference. Can someone guide me as to how I could get the right panorama? The images for the source are obtained by splitting a video into frames and then using these as input images.

x

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.