Giter Club home page Giter Club logo

operationsresearchmodels.jl's Introduction

Doc

OperationsResearchModels.jl

A package for Operations Research problems.

Installation

julia> ]
(@v1.xx) pkg> add OperationsResearchModels

or

julia> using Pkg
julia> Pkg.add("OperationsResearchModels")

The Content

Linear Transportation Problem

Suppose the linear transportation problem is

D1 D2 D3 D4 Supply
S1 1 5 (100) 7 8 100
S2 2 6 4 (100) 9 100
S3 3 (100) 10 11 12 (100) 200
Demand 100 100 100 100

Here is the Julia solution:

t = TransportationProblem(
            [1 5 7 8;
             2 6 4 9;
             3 10 11 12;],
            [100, 100, 100, 100],
            [100, 100, 200])
        
result = solve(t)

Linear Assignment Problem

mat = [
            4 8 1;
            3 1 9;
            1 6 7;
        ]
        # x13 = 1
        # x22 = 1
        # x31 = 1
        # cost = 3 

a = AssignmentProblem(mat)
result = solve(a)

The Shortest-Path Problem

conns = [
            Connection(1, 2, 3),
            Connection(1, 3, 2),
            Connection(1, 4, 4),
            Connection(2, 5, 3),
            Connection(3, 5, 1),
            Connection(3, 6, 1),
            Connection(4, 6, 2),
            Connection(5, 7, 6),
            Connection(6, 7, 5),
]
result = solve(conns, problem = ShortestPathProblem)

The Maximum Flow Problem

conns = [
            Connection(1, 4, 10),
            Connection(1, 2, 20),
            Connection(1, 3, 30),
            Connection(2, 3, 30),
            Connection(4, 5, 20),
            Connection(3, 5, 20),
            Connection(2, 5, 30),
            Connection(3, 4, 10),
            Connection(4, 3, 5),
        ]

result = solve(conns, problem = MaximumFlowProblem)

Zero-Sum Games

mat = [
          -2 6 3;
           3 -4 7;
           -1 2 4;
    ]

result = game(mat)

p-median for selecting location of facilities

julia> distance_matrix = Float64[
            0 8 7 9 3;
            8 0 2 6 1;
            7 2 0 4 5;
            9 6 4 0 10;
            3 1 5 10 0]

julia> number_of_depots = 3;

julia> result = pmedian_with_distances(distance_matrix, number_of_depots);

julia> result.objective
3.0

julia> result.y
5-element Vector{Float64}:
  1.0
  1.0
 -0.0
  1.0
 -0.0

julia> result.centers
3-element Vector{Int64}:
 1
 2
 4

Minimum Spanning Tree

julia> conns = Connection[
                       Connection(1, 2, 10),
                       Connection(2, 3, 10),
                       Connection(3, 4, 10),
                       Connection(1, 4, 10)
                   ]
4-element Vector{Connection}:
 Connection(1, 2, 10, "x12")
 Connection(2, 3, 10, "x23")
 Connection(3, 4, 10, "x34")
 Connection(1, 4, 10, "x14")

julia> result = mst(conns)
MstResult(Connection[Connection(3, 4, 10, "x34"), Connection(1, 4, 10, "x14"), Connection(2, 3, 10, "x23")], 30.0)

julia> result.distance
30.0

julia> result.connections
3-element Vector{Connection}:
 Connection(3, 4, 10, "x34")
 Connection(1, 4, 10, "x14")
 Connection(2, 3, 10, "x23")

CPM (Critical Path Method)

PERT (Project Evaluation and Review Technique)

A = PertActivity("A", 1, 2, 3)
B = PertActivity("B", 3, 3, 3)
# C dependens on A and B
# with optimistic, mostlikely, and pessimistics
# times of 5, 5, and 5, respectively
C = PertActivity("C", 5, 5, 5, [A, B])

activities = [A, B, C]
julia> result = pert(activities)
PertResult(PertActivity[PertActivity("B", 3.0, 3.0, 3.0, PertActivity[]), PertActivity("C", 5.0, 5.0, 5.0, PertActivity[PertActivity("A", 1.0, 2.0, 3.0, PertActivity[]), PertActivity("B", 3.0, 3.0, 3.0, PertActivity[])])], 8.0, 0.0)
julia> result.mean
8.0

julia> result.stddev
0.0

julia> result.path
2-element Vector{PertActivity}:
 PertActivity("B", 3.0, 3.0, 3.0, PertActivity[])
 PertActivity("C", 5.0, 5.0, 5.0, PertActivity[PertActivity("A", 1.0, 2.0, 3.0, PertActivity[]), PertActivity("B", 3.0, 3.0, 3.0, PertActivity[])])

Simplex with iterations

Suppose the problem is

$$ \begin{aligned} \max z = & 2x_1 + 3x_2 \\ \text{Subject to:} & \\ & x_1 + 2x_2 \le 100 \\ & 2x_1 + x_2 \le 150 \\ & x_1, x_2 \ge 0 \end{aligned} $$

using OperationsResearchModels.Simplex

problem = createsimplexproblem(
    Float64[2, 3],
    Float64[1 2; 2 1],
    Float64[100, 150],
    [LE, LE],
    Maximize
);

println(problem)
Maximize -> 2.0x1 + 3.0x2
S.t:
1.0x1 + 2.0x2 LE 100.0
2.0x1 + 1.0x2 LE 150.0
All variables are non-negative
julia> simplexpretty(problem)

[ Info: The problem:
Maximize -> 2.0x1 + 3.0x2
S.t:
1.0x1 + 2.0x2 LE 100.0
2.0x1 + 1.0x2 LE 150.0
All variables are non-negative

[ Info: The standard form:
Maximize -> 2.0x1 + 3.0x2 + 0.0x3 + 0.0x4
S.t:
x3: 1.0x1 + 2.0x2 + 1.0x3 + 0.0x4 EQ 100.0
x4: 2.0x1 + 1.0x2 + 0.0x3 + 1.0x4 EQ 150.0
Slack: [3, 4]
Basic Variables: [3, 4]
All variables are non-negative

[ Info: M Method corrections:
Maximize -> 2.0x1 + 3.0x2 + 0.0x3 + 0.0x4
S.t:
x3: 1.0x1 + 2.0x2 + 1.0x3 + 0.0x4 EQ 100.0
x4: 2.0x1 + 1.0x2 + 0.0x3 + 1.0x4 EQ 150.0
Slack: [3, 4]
Basic Variables: [3, 4]
All variables are non-negative

[ Info: Iteration 1
Maximize -> 0.5x1 + 0.0x2 + -1.5x3 + 0.0x4
S.t:
x2: 0.5x1 + 1.0x2 + 0.5x3 + 0.0x4 EQ 50.0
x4: 1.5x1 + 0.0x2 + -0.5x3 + 1.0x4 EQ 100.0
Slack: [3, 4]
Basic Variables: [2, 4]
All variables are non-negative

[ Info: Iteration 2
Maximize -> 0.0x1 + 0.0x2 + -1.3333333333333333x3 + -0.3333333333333333x4
S.t:
x2: 0.0x1 + 1.0x2 + 0.6666666666666666x3 + -0.3333333333333333x4 EQ 16.666666666666664
x1: 1.0x1 + 0.0x2 + -0.3333333333333333x3 + 0.6666666666666666x4 EQ 66.66666666666667
Slack: [3, 4]
Basic Variables: [2, 1]
All variables are non-negative

[ Info: Iteration 3
Maximize -> 0.0x1 + 0.0x2 + -1.3333333333333333x3 + -0.3333333333333333x4
S.t:
x2: 0.0x1 + 1.0x2 + 0.6666666666666666x3 + -0.3333333333333333x4 EQ 16.666666666666664
x1: 1.0x1 + 0.0x2 + -0.3333333333333333x3 + 0.6666666666666666x4 EQ 66.66666666666667
Slack: [3, 4]
Basic Variables: [2, 1]
All variables are non-negative
Status: CONVERGED!

[ Info: The problem is converged
[ Info: Here is the result
[ Info: x2 = 16.666666666666664
[ Info: x1 = 66.66666666666667
[ Info: Objective value: 183.33333333333334

The Classical Knapsack Problem

julia> using OperationsResearchModels

julia> values = [1, 5, 89, 10];

julia> weights = [5, 6, 3, 5];

julia> result = knapsack(values, weights, 8);

julia> result.selected
4-element Vector{Bool}:
 0
 0
 1
 1

julia> result.objective
99.0

operationsresearchmodels.jl's People

Contributors

jbytecode avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.