Giter Club home page Giter Club logo

Comments (4)

Jammy2211 avatar Jammy2211 commented on August 25, 2024

I am not 100% sure what you asking, but (assumingy you have a result which you use are using to get mp_instance) you could try:

tracer = result.max_log_likelihood_tracer
fit = al.FitPointDict(point_dict=point_dict, tracer=tracer, positions_solver=solver)
fit["point_0"].positions.model_positions

This should give you the positions from the model.

from pyautolens.

felavila avatar felavila commented on August 25, 2024

Hi, first thanks for your answer and sorry for not being clear, second my true doubt is I can reproduce the same configuration in Lenstronomy just using the parameters obtained from Pyautolens or i have to make some change in the parameters for example.

I made a toy model in lenstronomy

angle=30# degrees positive from x axis
e1,e2 = param_util.phi_q2_ellipticity((angle)*np.pi/180.,q=0.7)
kwargs_lens=[{'theta_E': 0.8, 'e1': e1, 'e2': e2, 'center_x': 0.5, 'center_y': 0.5, 'gamma': 2.0}]
lensModel=LensModel(lens_model_list=['PEMD'])#SIE whit gamma variable.
source_x,source_y=0.3,0.3
numPix = 500  #  cutout pixel size
deltaPix = 0.05  #  pixel size in arcsec (area per pixel = deltaPix**2)
lens_model_class = LensModel(lens_model_list=['PEMD'], z_lens=0.5, z_source=2, cosmo=Cosmo)
lensEquationSolver = LensEquationSolver(lens_model_class)
x_image, y_image = lensEquationSolver.findBrightImage(source_x, source_y, kwargs_lens,
                                                min_distance=deltaPix, search_window=numPix * deltaPix)

And obtain:
#Coord x,y
[0.03349649 0.86431612] [-0.43449932 0.79154548]
Whit that coords i made a .json file

[
    {
        "name": "point_0",
        "positions": [
            [
                -0.43449932,
                0.03349649
            ],
            [
                 0.79154548,
                    0.86431612
           
            ]
        ],
        "positions_noise_map": [
            0.003,
            0.003
        ],
        "fluxes": [
                21.83,
                19.39
        ],
        "fluxes_noise_map": [
            1.0,
            1.0
        ]
    }
]

And made the model from the .json file similar to your examples in pointsource

point_0=al.ps.PointFlux
point_dict = al.PointDict.from_json(file_path=path.join("someplace","exp1.json"))
pixel_scale_precision=0.025       
source = af.Model(al.Galaxy, redshift=2, point_0=point_0)
model = af.Collection(galaxies=af.Collection(lens_0=af.Model(al.Galaxy, redshift=0.5, mass=al.mp.EllIsothermal),source=source))
model.galaxies.lens_0.mass.centre_0=0.5
model.galaxies.lens_0.mass.centre_1=0.5
samples = result.samples
mp_vector = samples.median_pdf_vector
grid = al.Grid2D.uniform(shape_native=(200,200), pixel_scales=(0.05, 0.05))
positions_solver = al.PositionsSolver(grid=grid, pixel_scale_precision=pixel_scale_precision)
path_prefix="/mnt/c/Users/jataq/Desktop"
dataset_name="ajustes"
search = af.DynestyStatic(path_prefix=path_prefix, name="fv2", unique_tag=dataset_name,
nlive=406,
number_of_cores=4)
analysis = al.AnalysisPoint(point_dict=point_dict, solver=positions_solver)
result = search.fit(model=model, analysis=analysis)

And then

tracer = al.Tracer.from_galaxies(galaxies=result.max_log_likelihood_tracer.galaxies)
solver = al.PositionsSolver(grid=grid,pixel_scale_precision=pixel_scale_precision)
fit = al.FitPointDict(point_dict=point_dict, tracer=tracer, positions_solver=solver)

And obtein these results from fit["point_0"].positions.model_positions

[[-0.4375  0.0375]
 [ 0.7875  0.8625]]

And from print result.max_log_likelihood_tracer.galaxies

EllIsothermal
centre: (0.5, 0.5)
elliptical_comps: (-0.07790185612420741, 0.16393196492822135)
axis_ratio: 0.6927628904038955
angle: -12.70873115953642
einstein_radius: 0.7428787155501909
slope: 2.0
core_radius: 0.0
id: 9601
_is_frozen: False
_frozen_cache: {}
_assertions: [], Redshift: 2]

Then with these results i wanna obtain the same images from the fit in the lenstromy code

e1,e2 = param_util.phi_q2_ellipticity((-12.70873115953642)*np.pi/180.,q=0.6927628904038955)#
kwargs_lens=[{'theta_E': 0.7428787155501909, 'e1': e1, 'e2': e2, 'center_x': 0.5, 'center_y': 0.5, 'gamma': 2.0}]
lensModel=LensModel(lens_model_list=['PEMD'])
source_x,source_y=mp_vector[1],mp_vector[0]
numPix = 500  #  cutout pixel size
deltaPix = 0.05  #  pixel size in arcsec (area per pixel = deltaPix**2)
lens_model_class = LensModel(lens_model_list=['PEMD'], z_lens=0.5, z_source=2, cosmo=Cosmo) #primer cambio
#lensModel = LensModel(lens_model_list=lens_model_list)
#lensModelExtensions = LensModelExtensions(lensModel=lensModel)
lensEquationSolver = LensEquationSolver(lens_model_class)
x_image, y_image = lensEquationSolver.findBrightImage(source_x, source_y, kwargs_lens,
                                                min_distance=deltaPix, search_window=numPix * deltaPix)

And obtein :
coords x,y
[0.02850714 0.87231816] [-0.44667117 0.79612796]
So finally, the "originals" images are
#Coord x,y
[0.03349649 0.86431612] [-0.43449932 0.79154548]
from fit:
[[-0.4375 0.0375]
[ 0.7875 0.8625]]
And from lenstronomy using the parameters obtained from the model.
[0.02850714 0.87231816] [-0.44667117 0.79612796]
So my doubt is if you know where these differences come from, the model is pretty similar from the toy original model less in the angle parameter. Thanks alot for your answer.
Felipe Avila

from pyautolens.

Jammy2211 avatar Jammy2211 commented on August 25, 2024

I honestly have no idea.

It is highly like that autolens and lenstronomy adopt different conventions for parameters. Especially something like angle, which could be defined from the x axis or y axis in the clockwise or counter clockwise direction.

I doubt I can provide much more help!

from pyautolens.

felavila avatar felavila commented on August 25, 2024

Ok, thanks for your answer. Cheers Felipe

from pyautolens.

Related Issues (20)

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.