Giter Club home page Giter Club logo

infineon / mtb-example-xmc-flash-eeprom Goto Github PK

View Code? Open in Web Editor NEW
0.0 15.0 0.0 595 KB

This code example shows how to use a portion of the internal flash memory of XMC MCUs as emulated EEPROM memory, and provides necessary APIs to perform read and write operations to the emulated EEPROM.

Makefile 3.12% C 96.88%
kit-xmc14-boot-001 kit-xmc47-relax-v1 peripherals kit-xmc-plt2go-xmc4200 kit-xmc-plt2go-xmc4400 kit-xmc11-boot-001 kit-xmc12-boot-001 kit-xmc13-boot-001 kit-xmc43-relax-ecat-v1 kit-xmc45-relax-v1

mtb-example-xmc-flash-eeprom's Introduction

XMC™ MCU: Flash EEPROM

This code example shows how to use a portion of the internal flash memory of XMC™ MCUs as an emulated EEPROM memory, and provides the necessary APIs to perform read and write operations to the emulated EEPROM.

This code example does the following:

  1. Initializes an EEPROM block of size 64 bytes in the internal flash of the XMC™ MCU

  2. Reads and prints the existing data from the EEPROM block

  3. Adds '1' to each byte read from the EEPROM block and writes the new data back to the EEPROM

  4. Reads and prints the new data from the EEPROM block

View this README on GitHub.

Provide feedback on this code example.

Requirements

Supported toolchains (make variable 'TOOLCHAIN')

  • GNU Arm® embedded compiler v10.3.1 (GCC_ARM) - Default value of TOOLCHAIN
  • Arm® compiler v6.16 (ARM)
  • IAR C/C++ compiler v9.30.1 (IAR)

Supported kits (make variable 'TARGET')

Hardware setup

This example uses the board's default configuration. See the kit user guide to ensure that the board is configured correctly.

For XMC4500 relax kit, an external USB-UART bridge is required to view the log messages through UART.

Software setup

Install a terminal emulator if you don't have one. Instructions in this document use Tera Term.

This example requires no additional software or tools.

Using the code example

Create the project and open it using one of the following:

In Eclipse IDE for ModusToolbox™ software
  1. Click the New Application link in the Quick Panel (or, use File > New > ModusToolbox™ Application). This launches the Project Creator tool.

  2. Pick a kit supported by the code example from the list shown in the Project Creator - Choose Board Support Package (BSP) dialog.

    When you select a supported kit, the example is reconfigured automatically to work with the kit. To work with a different supported kit later, use the Library Manager to choose the BSP for the supported kit. You can use the Library Manager to select or update the BSP and firmware libraries used in this application. To access the Library Manager, click the link from the Quick Panel.

    You can also just start the application creation process again and select a different kit.

    If you want to use the application for a kit not listed here, you may need to update the source files. If the kit does not have the required resources, the application may not work.

  3. In the Project Creator - Select Application dialog, choose the example by enabling the checkbox.

  4. (Optional) Change the suggested New Application Name.

  5. The Application(s) Root Path defaults to the Eclipse workspace which is usually the desired location for the application. If you want to store the application in a different location, you can change the Application(s) Root Path value. Applications that share libraries should be in the same root path.

  6. Click Create to complete the application creation process.

For more details, see the Eclipse IDE for ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/ide_{version}/docs/mt_ide_user_guide.pdf).

In command-line interface (CLI)

ModusToolbox™ software provides the Project Creator as both a GUI tool and the command line tool, "project-creator-cli". The CLI tool can be used to create applications from a CLI terminal or from within batch files or shell scripts. This tool is available in the {ModusToolbox™ software install directory}/tools_{version}/project-creator/ directory.

Use a CLI terminal to invoke the "project-creator-cli" tool. On Windows, use the command line "modus-shell" program provided in the ModusToolbox™ software installation instead of a standard Windows command-line application. This shell provides access to all ModusToolbox™ software tools. You can access it by typing modus-shell in the search box in the Windows menu. In Linux and macOS, you can use any terminal application.

This tool has the following arguments:

Argument Description Required/optional
--board-id Defined in the <id> field of the BSP manifest Required
--app-id Defined in the <id> field of the CE manifest Required
--target-dir Specify the directory in which the application is to be created if you prefer not to use the default current working directory Optional
--user-app-name Specify the name of the application if you prefer to have a name other than the example's default name Optional

The following example will clone the "Flash EEPROM" application with the desired name "FlashEEPROM" configured for the KIT_XMC47_RELAX_V1 BSP into the specified working directory, C:/mtb_projects:

project-creator-cli --board-id KIT_XMC47_RELAX_V1 --app-id mtb-example-xmc-flash-eeprom --user-app-name FlashEEPROM --target-dir "C:/mtb_projects"

Note: The project-creator-cli tool uses the git clone and make getlibs commands to fetch the repository and import the required libraries. For details, see the "Project creator tools" section of the ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mtb_user_guide.pdf).

In Third-party IDEs

Note: Only VS Code is supported.

  1. Follow the instructions from the In command-line interface (CLI) section to create the application, and import the libraries using the make getlibs command.

  2. Export the application to a supported IDE using the make <ide> command.

    For a list of supported IDEs and more details, see the "Exporting to IDEs" section of the ModusToolbox™ software user guide (locally available at {ModusToolbox™ software install directory}/docs_{version}/mtb_user_guide.pdf).

  3. Follow the instructions displayed in the terminal to create or import the application as an IDE project.

Operation

  1. Connect the board to your PC using a micro-USB cable through the debug USB connector.

  2. Program the board using Eclipse IDE for ModusToolbox™ software:

    1. Select the application project in the Project Explorer.

    2. In the Quick Panel, scroll down, and click <Application Name> Program (JLink).

  3. Verify that the following log messages are displayed on the UART terminal:

    Figure 1. Log messages

Debugging

You can debug the example to step through the code. In the IDE, use the <Application Name> Debug (JLink) configuration in the Quick Panel. For more details, see the "Program and debug" section in the Eclipse IDE for ModusToolbox™ software user guide.

Design and implementation

The main function calls only the E_EEPROM_example() function, which consists of three steps as follows:

  • Step 1: Initializes the read and write data buffer in the RAM. The read data buffer is defined by the data_rbuffer[E_EEPROM_SIZE] array and the write data buffer is defined by the data_wbuffer[E_EEPROM_SIZE] array. They are used to save the data from the flash memory and to write to the flash memory.

  • Step 2: Initializes the emulated EEPROM application using the E_EEPROM_XMC4_Init function for XMC4000 series devices and the E_EEPROM_XMC1_Init() function for XMC1000 series devices, and copies the latest saved data from the flash to the reserved RAM buffer.

  • Step 3: Reads the data from the EEPROM block. Afterward, it increments the read data by 1 and programs it back to the EEPROM. Finally, it reads and prints the new data from the EEPROM. For XMC1000 series devices, all the sub-steps are performed inside the E_EEPROM_test() function called from the E_EEPROM_example() function. For XMC4000 series devices, all the sub-steps are programmed inside the E_EEPROM_example() function.

Note: For XMC1000 series devices: Before starting, make sure that the flash does not contain any data in the EEPROM area. Erase the EEPROM area using XMC_FLASH_ErasePages() API. In the main.c file, uncomment the function call E_EEPROM_erase(), and then build and program. Once the example runs successfully, the function call can be commented for future builds to ensure data retention. The log messages on the UART window appear as shown in Figure 2.

Figure 2. Log messages when erase operation is performed

Resources and settings

The project uses a custom design.modus file because the following settings were modified in the default design.modus file.

Figure 3. USIC (UART) settings


Figure 4. UART Tx pin settings


Figure 5. UART Rx pin settings

Related resources

Resources Links
Code examples Using ModusToolbox™ software on GitHub
Device documentation XMC1000 family datasheets
XMC4000 family datasheets
XMC1000 family technical reference manuals
XMC4000 family technical reference manuals
Development kits XMC™ eval boards
Libraries on GitHub mtb-xmclib-cat3 – XMC™ peripheral driver library (XMCLib) and docs
Tools Eclipse IDE for ModusToolbox™ software – ModusToolbox™ software is a collection of easy-to-use software and tools enabling rapid development with Infineon MCUs, covering applications from embedded sense and control to wireless and cloud-connected systems using AIROC™ Wi-Fi and Bluetooth® connectivity devices.

Other resources

Infineon provides a wealth of data at www.infineon.com to help you select the right device, and quickly and effectively integrate it into your design.

For XMC™ MCU devices, see 32-bit XMC™ industrial microcontroller based on Arm® Cortex®-M.

Document history

Document title: CE232589XMC™ MCU: Flash EEPROM

Version Description of change
1.0.0 New code example
1.0.1 Updated README
1.1.0 Added support for more kits
2.0.0 Updated to support ModusToolbox&trade software v3.0; CE will not be backwards compatible with previous versions of ModusToolbox™ software
2.1.0 Added support for more kits

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© 2022 Infineon Technologies AG

All Rights Reserved.

Legal disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


mtb-example-xmc-flash-eeprom's People

Contributors

cy-msur avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.