Giter Club home page Giter Club logo

deepquantiles's People

Contributors

ig248 avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

deepquantiles's Issues

Single Net Quantile Regression

Hi Igor,
thanks for your great post on Quantile Regression. I recently came across a paper by two Facebook AI researchers who used a nice and simple approach based on random q values during training to do quantile regression. This way, you neither need multiple outputs (as I had previously done) nor multiple nets (as you have done in our post).
I was wondering what you think about the approach and whether you think it can be implemented in Keras. Generally, one would just need to induce random q values during training. I tried, but failed so far.
Best,
Tim

Torch code from the authors' repo below (https://arxiv.org/pdf/1811.00908.pdf)

from typing import Union
import torch
import torch.utils.data as Data
import numpy

class FBUncertaintyRegressor():
def init(self, hidden: int = 64, epochs: int = 10, learning_rate: float = 1e-2, weight_decay: float = 1e-2,
quantil: Union[float, str] = "all", device: Union[str, torch.device] = 'cpu'):
super().init()
self.hidden = hidden
self.epochs = epochs
self.batch_size = 64
self.learning_rate = learning_rate
self.quantil = quantil
self.weight_decay = weight_decay
if isinstance(device, str):
self.device = torch.device(device)
elif isinstance(device, torch.device):
self.device = device
else:
self.device = torch.device('cpu')
self.model = None

def fit(self, data: numpy.ndarray, targets: numpy.ndarray = None) -> 'FBUncertaintyRegressor':
    data = torch.tensor(data, dtype=torch.float32)
    targets = torch.tensor(targets, dtype=torch.float32).to(device=self.device)
    ds = Data.TensorDataset(data, targets)
    loader = Data.DataLoader(dataset=ds, batch_size=self.batch_size)

    dim = data.shape[1]
    self.model = torch.nn.Sequential(
        torch.nn.Linear(dim + 1, self.hidden),
        torch.nn.ReLU(),
        torch.nn.BatchNorm1d(self.hidden),
        torch.nn.Dropout(.2),
        torch.nn.Linear(self.hidden, 1)
    ).to(device=self.device)

    opt = torch.optim.Adam(self.model.parameters(), eps=1e-07,
                           lr=self.learning_rate)   #, weight_decay=self.weight_decay)
    loss = QuantileLoss()

    for i in range(self.epochs):
        for batch_x, batch_y in loader:
            batch_x = batch_x.to(device=self.device)
            opt.zero_grad()
            if self.quantil == "all":
                taus = torch.rand(batch_x.shape[0], 1).to(device=self.device)
            else:
                taus = torch.zeros(batch_x.shape[0], 1).fill_(self.quantil).to(device=self.device)
            tau_augs = self.__augment__(batch_x, taus)
            model_out = self.model(tau_augs)
            a = loss(model_out, targets, taus)
            a.backward()
            opt.step()
        print(i, a)
        #taus_ = torch.rand(data.size(0), 1).fill_(self.quantil).to(device=self.device)
        #loss_ = loss(self.model(self.__augment__(data, taus_)), targets, taus_).detach().numpy()
        #print(f"Epoch {i}/{self.epochs}; loss: {loss_}")

    return self

def predict(self, data: numpy.ndarray, predict_quantil: float = None) -> numpy.ndarray:
    if predict_quantil is None and isinstance(self.quantil, float):
        predict_quantil = self.quantil
    data = torch.tensor(data, dtype=torch.float32).to(device=self.device)
    return self.model(self.__augment__(data, predict_quantil)).to(device='cpu').detach().numpy()

def __augment__(self, data: torch.Tensor, tau=None) -> torch.Tensor:
    if tau is None:
        tau = torch.zeros(data.size(0), 1).fill_(0.5).to(device=self.device)
    elif type(tau) == float:
        tau = torch.zeros(data.size(0), 1).fill_(tau).to(device=self.device)
    return torch.cat((data, (tau - 0.5) * 12), 1)

class QuantileLoss(torch.nn.Module):
def init(self):
super(QuantileLoss, self).init()

def forward(self, yhat: torch.Tensor, y: torch.Tensor, tau: float) -> torch.Tensor:
    diff = yhat - y
    mask = (diff.ge(0).float() - tau).detach()
    return (mask * diff).mean()

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.