Giter Club home page Giter Club logo

kotlin-monads's Introduction

kotlin-monads

An attempt to implement monads in Kotlin, deeply inspired by Haskell monads, but restricted within the Kotlin type system.

The monad type

Monadic types are represented by the Monad<M, T> interface, where M should be the type of the implementation with only its T star-projected. Examples: Maybe<T> : Monad<Maybe<*>, T>, State<S, T> : Monad<State<S, *>, T>.

With Monad defined in this way, we are almost able to say in terms of the Kotlin type system that a function returns the same Monad implementation but with a different type argument R instead of T:

fun <T, R, M : Monad<M, *>> Monad<M, T>.map(f: (T) -> R) = bind { returns(f(it)) }

val m = just(3).map { it * 2 } as Maybe

We still need the downcast as Maybe, but at least it's checked.

Usage

Add as a dependency:

repositories {
    ...
    maven { url 'https://jitpack.io' }
}

dependencies {
    ...
    compile 'com.github.h0tk3y:kotlin-monads:0.5'
}

See the usage examples in tests.

How to implement a monad

Monad<M, T> is defined as follows:

interface Return<M> {
    fun <T> returns(t: T): Monad<M, T>
}

interface Monad<This, out T> {
    infix fun <R> bind(f: Return<This>.(T) -> Monad<This, R>): Monad<This, R>
}

The monad implementation should only provide one function bind (Haskell: >>=), no separate return is there, instead, if you look at the signature of bind, you'll see that the function to bind with is f: Return<This>.(T) -> Monad<This, R>. It means that a Monad<M, T> implementation should provide the Return<M> as well and pass it to f each time, so that inside f its returns could be used:

just(3) bind { returns(it * it) }

There seems to be no direct equivalent to Haskell return, which could be used outside any context like bind blocks. Outside the bind blocks, you should either wrap the values into your monads manually or require a Return<M>, which can wrap T into Monad<M, T> for you.

Mind the monad laws. A correct monad implementation follows these three rules (rephrased in terms of kotlin-monads):

  1. Left identity: returns(x) bind { f(it) } should be equivalent to f(x)

  2. Right identity: m bind { returns(it) } should be equivalent to m

  3. Associativity: m bind { f(it) } bind { g(it) } should be equivalent to m bind { f(it) bind { g(it) } }

Also, it's good to make the return type of bind narrower, e.g. bind of Maybe<T> would rather return Maybe<R> than Monad<Maybe<*>, R>, it allows not to cast the result of a bind called on a known monad type.

val m = monadListOf(1, 2, 3) bind { monadListOf("$it", "$it") } // already `MonadList<String>`, no need to cast

Example implementation:

sealed class Maybe<out T> : Monad<Maybe<*>, T> {
    class Just<T>(val value: T) : Maybe<T>()
    class None : Maybe<Nothing>()

    override fun <R> bind(f: Binder<Maybe<*>, T, R>): Maybe<R> = when (this) {
        is Just -> f(MaybeReturn, value) as Maybe
        is None -> None()
    }
}

object MaybeReturn : Return<Maybe<*>> {
    override fun <T> returns(t: T) = Maybe.Just(t)
}

Monads implementations bundled

  • Maybe<T>
  • Either<F, T>
  • MonadList<T>
  • Reader<E, T>
  • Writer<T> (no monoid for now, just String)
  • State<S, T>

Do notation

With the power of Kotlin coroutines, we can even have an equivalent of the Haskell do notation:

Simple example that performs a monadic list nondeterministic expansion:

val m = doReturning(MonadListReturn) {
    val x = bind(monadListOf(1, 2, 3))
    val y = bind(monadListOf(x, x + 1))
    monadListOf(y, x * y)
}

assertEquals(monadListOf(1, 1, 2, 2, 2, 4, 3, 6, 3, 9, 4, 12), m)

Or applied to an existing monad for convenience:

val m = monadListOf(1, 2, 3).bindDo { x ->
    val y = bind(monadListOf(x, x + 1))
    monadListOf(y, x * y)
}

This is effectively equivalent to the following code written with only simple bind:

val m = monadListOf(1, 2, 3).bind { x ->
    monadListOf(x, x + 1).bind { y -> 
        monadList(y, x * y)
    }
}

Note that, with simple bind, each transformation requires another inner scope if it uses the variables bound outside, which would lead to some kind of callback hell. This problem is effectively solved using the Kotlin coroutines: the compiler performs the CPS transformation of a plain code block under the hood. However, this coroutines use case is somewhat out of conventions: it might resume the same continuation several times and uses quite a dirty hack to do that.

The result type parameter (R in Monad<M, R>) is usually inferred, and the compiler controls the flow inside a do block, but still you need to downcast the Monad<M, R> to your actual monad type (e.g. Monad<Maybe<*>, R> to Maybe), because the type system doesn't seem to allow this to be done automatically (if you know a way, please tell me).

Be careful with mutable state in do blocks, since all continuation calls will share it, sometimes resulting into counter-intuitive results:

 val m = doReturning(MonadListReturn) {
     for (i in 1..10)
         bind(monadListOf(0, 0))
     returns(0)
 } as MonadList

One would expect 1024 items here, but the result only contains 11! That's because i is mutable and is shared between all the calls that bind makes.

kotlin-monads's People

Contributors

h0tk3y avatar jrgonzalezg avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

kotlin-monads's Issues

Add license

I just noticed that there is no explicit license for this project. Would you consider to add an Apache or similar license on it so it can be used on other projects? Thanks!

1.1.0 release

Hey @h0tk3y, awesome project!

I'm goint to use it in a POC to teach some friends FP here antoniolg/Bandhook-Kotlin#28

Looks like there is no release for Kotlin 1.1.0 and I can't depend on the current release. Any chances we can have a release for 1.1.0? Thanks!

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.