Giter Club home page Giter Club logo

go-lang-cheat-sheet's Introduction

Go Cheat Sheet

Credits

Most example code taken from A Tour of Go, which is an excellent introduction to Go. If you're new to Go, do that tour. Seriously.

Go in a Nutshell

  • Imperative language
  • Statically typed
  • Syntax similar to Java/C/C++, but less parantheses and no semicolons
  • Compiles to native code (no JVM)
  • No classes, but structs with methods
  • Interfaces
  • No implementation inheritance. There's type embedding, though.
  • Functions are first class citizens
  • Functions can return multiple values
  • Go has closures
  • Pointers, but not pointer arithmetic
  • Built-in concurrency primitives: Goroutines and Channels

Basic Syntax

Hello World

File hello.go:

package main

import "fmt"

func main() {
    fmt.Println("Hello Go")
}

$ go run hello.go

Declarations

  • Type goes after identifier!
  • var foo int // declaration without initialization
  • var foo int = 42 // declaration with initialization
  • var foo, bar int = 42, 1302 // declare and init multiple vars at once
  • var foo = 42 // type omitted, will be inferred
  • foo := 42 // shorthand, only in func bodies, omit var keyword, type is always implicit
  • const constant = "This is a constant"

Functions

// a simple function
func functionName() {}

// function with parameters (again, types go after identifiers)
func functionName(param1 string, param2 int) {}

// multiple parameters of the same type
func functionName(param1, param2 int) {}

// return type declaration
func functionName() (int) {
    return 42
}

// Can return multiple values at once
func returnMulti() (int, string) {
    return 42, "foobar"
}
var x, str = returnMulti()

// Return multiple named results simply by return
func returnMulti2() (n int, s string) {
    n = 42
    s = "foobar"
    // n and s will be returned
    return
}
var x, str = returnMulti2()

Functions As Values And Closures

func main() {
    // assign a function to a name
    add := func(a, b int) int {
        return a + b
    }
    // use the name to call the function
    fmt.Println(add(3, 4))
}

// Closures: Functions can access values that were in scope when defining the
// function

// adder returns an anonymous function with a closure containing the variable sum
func adder() func(int) int {
    sum := 0
    return func(x int) int {
        sum += x // sum is declared outside, but still visible
        return sum
    }
}

Variadic Functions

func main() {
	fmt.Println(adder(1, 2, 3)) // return 6
	fmt.Println(adder(9, 9)) // return 18
	var numbers = []int{1, 2}
	fmt.Println(addr(numbers...)) //return 3
}

// By using ... before the type name of the last parameter you can indicate that it takes zero or more of those parameters.
// The function is invoked like any other function except we can pass as many arguments as we want.
func adder(args ...int) int {
	total := 0
	for _, v := range args { // Iterates over the arguments whatever the number.
		total += v
	}
	return total
}

Built-in Types

bool

string

int  int8  int16  int32  int64
uint uint8 uint16 uint32 uint64 uintptr

byte // alias for uint8

rune // alias for int32 ~= a character (Unicode code point) - very Viking

float32 float64

complex64 complex128

Type Conversions

var i int = 42
var f float64 = float64(i)
var u uint = uint(f)

// alternative syntax
i := 42
f := float64(i)
u := uint(f)

Packages

  • package declaration at top of every source file
  • executables are in package main
  • convention: package name == last name of import path (import path math/rand => package rand)
  • upper case identifier: exported (visible from other packages)
  • Lower case identifier: private (not visible from other packages)

Control structures

If

    if x > 0 {
        return x
    } else {
        return -x
    }

    // You can put one statement before the condition
    if a := b + c; a < 42 {
        return a
    } else {
        return a - 42
    }

Loops

    // There's only `for`, no `while`, no `until`
    for i := 1; i < 10; i++ {
    }
    for ; i < 10;  { // while - loop
    }
    for i < 10  { // you can omit semicolons if there is only a condition
    }
    for { // you can omit the condition ~ while (true)
    }

Switch

    // switch statement
    switch operatingSystem {
    case "darwin":
        fmt.Println("Mac OS Hipster")
        // cases break automatically, no fallthrough by default
    case "linux":
        fmt.Println("Linux Geek")
    default:
        // Windows, BSD, ...
        fmt.Println("Other")
    }

    // as with for and if, you can have an assignment statement before the switch value 
    switch os := runtime.GOOS; os {
    case "darwin": ...
    }

Arrays, Slices, Ranges

Arrays

var a [10]int // declare an int array with lenght 10. Array length is part of the type!
a[3] = 42     // set elements
i := a[3]     // read elements

// declare and initialize
a := [2]int{1, 2}
a := [...]int{1, 2} // elipsis -> Compiler figures out array length

Slices

var a []int // declare a slice - similar to an array, but length is unspecified
var a = []int {1, 2, 3, 4} // declare and initialize a slize (backed by the array given implicitly)
a := []int{ 1, 2, 3, 4 } // shorthand


var b = a[lo:hi] // creates a slice (view of the array) from index lo to hi-1
var b = a[1:4] // slice from index 1 to 3
var b = a[:3] // missing low index implies 0
var b = a[3:] // missing high index implies len(a)

// create a slice with make
a = make([]byte, 5, 5) // first arg length, second capacity
a = make([]byte, 5) // capacity is optional

// copy
b = make([]T, len(a))
copy(b, a) // or b = append([]T(nil), a...)

// cut
a = append(a[:i], a[j:]...)

// Delete
a = append(a[:i], a[i+1:]...) // or a = a[:i+copy(a[i:], a[i+1:])]

// Delete without preserving order
a[i], a = a[len(a)-1], a[:len(a)-1]

// Pop
x, a = a[len(a)-1], a[:len(a)-1]

// Push
a = append(a, x)

Operations on Arrays and Slices

len(a) gives you the length of an array/a slice. It's a built-in function, not a attribute/method on the array.

// loop over an array/a slice
for i, e := range a {
    // i is the index, e the element
}

// you'll get a compiler error if you're not using i and e. If you only need e:
for _, e := range a {
    // e is the element
}

// ...and if you only need the index
for i := range a {
}

Maps

var m map[string]int
m = make(map[string]int)
m["key"] = 42
fmt.Println(m["key"])

delete(m, "key")

value, ok := m["key"] // test if key "key" is present and retrieve it, key exist, map contains key

if value, ok := m["key"], ok{
    // if key exist
}

// map literal
var m = map[string]Vertex{
    "Bell Labs": {40.68433, -74.39967},
    "Google":    {37.42202, -122.08408},
}

// iterate map
for k, v := range m{ ... }

// iterate key
for k := range m{ ... }

Structs

There are no classes, only structs. Structs can have methods.

// A struct is a type. It's also a collection of fields 

// Declaration
type Vertex struct {
    X, Y int
}

// Creating
var v = Vertex{1, 2}

// Accessing members
v.X = 4

// You can declare methods on structs. The struct you want to declare the
// method on (the receiving type) comes between the the func keyword and
// the method name. The struct is copied on each method call(!)
func (v Vertex) Abs() float64 {
    return math.Sqrt(v.X*v.X + v.Y*v.Y)
}

// Call method
v.Abs()

// For mutating methods, you need to use a pointer (see below) to the Struct
// as the type. With this, the struct value is not copied for the method call.
func (v *Vertex) add(n float64) {
    v.X += n
    v.Y += n
}

Pointers

p := Vertex{1, 2}  // p is a Vertex
q := &p            // q is a pointer to a Vertex
r := &Vertex{1, 2} // r is also a pointer to a Vertex

// The type of a pointer to a Vertex is *Vertex

var s *Vertex = new(Vertex) // new creates a pointer to a new struct instance 

Interfaces

// interface declaration
type Awesomizer interface {
    Awesomize() string
}

// types do *not* declare to implement interfaces
type Foo struct {}

// instead, types implicitly satisfy an interface if they implement all required methods
func (foo Foo) Awesomize() string {
    return "Awesome!"
}

Type Embedding

TODO

Errors

There is no exception handling. Functions that might produce an error just declare an additional return value of type Error. This is the Error interface:

type error interface {
    Error() string
}

A function that might return an error:

func doStuff() (int, error) {
}

func main() {
    result, error := doStuff()
    if (error != nil) {
        // handle error
    } else {
        // all is good, use result
    }
}

Concurrency

Goroutines

Goroutines are lightweight threads (managed by Go, not OS threads). go f(a, b) starts a new goroutine which runs f (given f is a function).

// just a function (which can be later started as a goroutine)
func doStuff(s string) {
}

func main() {
    // using a named function in a goroutine
    go doStuff("foobar")

    // using an anonymous inner function in a goroutine
    go func (x int) {
        // function body goes here
    }(42)
}

Channels

ch := make(chan int) // create a channel of type int
ch <- 42             // Send a value to the channel ch.
v := <-ch            // Receive a value from ch

// Non-buffered channels block. Read blocks when no value is available, write blocks if a value already has been written but not read.

// Create a buffered channel. Writing to a buffered channels does not block if less than <buffer size> unread values have been written.
ch := make(chan int, 100)

close(c) // closes the channel (only sender should close)

// read from channel and test if it has been closed
v, ok := <-ch

// if ok is false, channel has been closed

// Read from channel until it is closed
for i := range ch {
    fmt.Println(i)
}

// select blocks on multiple channel operations, if one unblocks, the corresponding case is executed
func doStuff(channelOut, channelIn chan int) {
    select {
    case channelOut <- 42:
        fmt.Println("We could write to channelOut!")
    case x := <- channelIn:
        fmt.Println("We could read from channelIn")
    }
}

Snippets

HTTP Server

package main

import (
    "fmt"
    "net/http"
)

// define a type for the response
type Hello struct{}

// let that type implement the ServeHTTP method (defined in interface http.Handler)
func (h Hello) ServeHTTP(w http.ResponseWriter, r *http.Request) {
    fmt.Fprint(w, "Hello!")
}

func main() {
    var h Hello
    http.ListenAndServe("localhost:4000", h)
}

// Here's the method signature of http.ServeHTTP:
// type Handler interface {
//     ServeHTTP(w http.ResponseWriter, r *http.Request)
// }

Packages

Regex

// Go offers built-in support for [regular expressions](http://en.wikipedia.org/wiki/Regular_expression).
// Here are some examples of  common regexp-related tasks
// in Go.


import "bytes"
import "fmt"
import "regexp"

// This tests whether a pattern matches a string.
match, _ := regexp.MatchString("p([a-z]+)ch", "peach")
fmt.Println(match) //true

// Above we used a string pattern directly, but for
// other regexp tasks you'll need to `Compile` an
// optimized `Regexp` struct.
r, _ := regexp.Compile("p([a-z]+)ch")

// Many methods are available on these structs. Here's
// a match test like we saw earlier.
fmt.Println(r.MatchString("peach")) //true

// This finds the match for the regexp.
fmt.Println(r.FindString("peach punch")) //peach

// This also finds the first match but returns the
// start and end indexes for the match instead of the
// matching text.
fmt.Println(r.FindStringIndex("peach punch")) //[0 5]

// The `Submatch` variants include information about
// both the whole-pattern matches and the submatches
// within those matches. For example this will return
// information for both `p([a-z]+)ch` and `([a-z]+)`.
fmt.Println(r.FindStringSubmatch("peach punch")) //[peach ea]

// Similarly this will return information about the
// indexes of matches and submatches.
fmt.Println(r.FindStringSubmatchIndex("peach punch")) //[0 5 1 3]

// The `All` variants of these functions apply to all
// matches in the input, not just the first. For
// example to find all matches for a regexp.
fmt.Println(r.FindAllString("peach punch pinch", -1)) //[peach punch pinch]

// These `All` variants are available for the other
// functions we saw above as well.
fmt.Println(r.FindAllStringSubmatchIndex(
"peach punch pinch", -1)) //[[0 5 1 3] [6 11 7 9] [12 17 13 15]]

// Providing a non-negative integer as the second
// argument to these functions will limit the number
// of matches.
fmt.Println(r.FindAllString("peach punch pinch", 2))  //[peach punch]

// Our examples above had string arguments and used
// names like `MatchString`. We can also provide
// `[]byte` arguments and drop `String` from the
// function name.
fmt.Println(r.Match([]byte("peach"))) //true

// When creating constants with regular expressions
// you can use the `MustCompile` variation of
// `Compile`. A plain `Compile` won't work for
// constants because it has 2 return values.
r = regexp.MustCompile("p([a-z]+)ch") 
fmt.Println(r) //p([a-z]+)ch

// The `regexp` package can also be used to replace
// subsets of strings with other values.
fmt.Println(r.ReplaceAllString("a peach", "<fruit>")) //a <fruit>

// The `Func` variant allows you to transform matched
// text with a given function.
in := []byte("a peach")
out := r.ReplaceAllFunc(in, bytes.ToUpper)
fmt.Println(string(out)) //a PEACH

// Add "\" to escape "\" from string
m, err := regexp.MatchString("[a-zA-Z0-9\\.\\+_-]+@[a-zA-Z0-9\\.\\+_-]+\\.[a-zA-Z0-9]+", email)

strings

// Trim
strings.Trim("!content? ", " !?") // content

// Split
strings.Split("first,second", ",") // [first second]

// StartsWith, EndsWith
strings.HasPrefix("prefix", "pre") // true
strings.HasSuffix("suffix", "fix") // true

json

import "encoding/json"
import "fmt"

fruits := map[string]int{"apple":1, "banana":2}
fruitsB, _ := json.Marshal(fruits)
string(fruitsB) //{"apple":1, "banana": 2}

type Box1 struct{
  Opened bool
  Fruits []string
}
type Box2 struct{
  Opened bool     `json:"opened"`
  Fruits []string `json:"fruits"`
}

box1 := &Box1{
  Opened: true,
  Fruits: ["apple", "pear"]
}
box1Byte, _ := json.Marshal(box1)
fmt.Println(string(box1Byte)) //{"Opened": true, "Fruits": ["apple", "pear"]}

box2 := &Box2{
  Opened: true,
  Fruits: ["apple", "pear"]
}
box2Byte, _ := json.Marshal(box2)
fmt.Println(string(box2Byte)) //{"opened": true, "fruits": ["apple", "pear"]}


byt := []byte(`{"num":6.13,"strs":["a","b"]}`)
var dat map[string]interface{}
if err := json.Unmarshal(byt, &dat); err != nil {
  panic(err)
}
fmt.Println(dat) //map[num:6.13 strs:[a b]]
num := dat["num"].(float64) //6.13
strs := dat["strs"].(interface{})
strs[0].(string) //"a"

str = `{"opened": true, "fruits":["apple", "pear"]}`
box := &Box2{}
json.Unmarshal([]byte(str), &box)
fmt.Println(box) //&{true, [apple, pear]}
fmt.Println(box.Opened) //true

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.