Giter Club home page Giter Club logo

dbt_reddit_ads_source's Introduction

Reddit Ads Source dbt Package (Docs)

📣 What does this dbt package do?

  • Materializes Reddit Ads staging tables which leverage data in the format described by this ERD. These staging tables clean, test, and prepare your reddit_ads data from Fivetran's connector for analysis by doing the following:
    • Naming the columns for consistency across all packages and for easier analysis
    • Adding freshness tests to source data
    • Adding column-level testing where applicable. For example, all primary keys are tested for uniqueness and non-null values.
  • Generates a comprehensive data dictionary of your Reddit Ads data through the dbt docs site.
  • These tables are designed to work simultaneously with our Reddit Ads transformation package.

🎯 How do I use the dbt package?

Step 1: Prerequisites

To use this dbt package, you must have the following:

  • At least one Fivetran Reddit Ads connector syncing data into your destination
  • A BigQuery, Snowflake, Redshift, PostgreSQL, or Databricks destination

Databricks Dispatch Configuration

If you are using a Databricks destination with this package, you will need to add the below (or a variation of the below) dispatch configuration within your dbt_project.yml. This is required in order for the package to accurately search for macros within the dbt-labs/spark_utils, then the dbt-labs/dbt_utils packages, respectively.

dispatch:
  - macro_namespace: dbt_utils
    search_order: ['spark_utils', 'dbt_utils']

Step 2: Install the package

Include the following reddit_ads_source package version in your packages.yml file.

TIP: Check dbt Hub for the latest installation instructions or read the dbt docs for more information on installing packages.

packages:
  - package: fivetran/reddit_ads_source
    version: [">=0.2.0", "<0.3.0"]

Step 3: Define database and schema variables

By default, this package runs using your destination and the reddit_ads schema. If this is not where your Reddit Ads data is (for example, if your reddit_ads schema is named reddit_ads_fivetran), add the following configuration to your root dbt_project.yml file:

vars:
    reddit_ads_database: your_destination_name
    reddit_ads_schema: your_schema_name 

(Optional) Step 4: Additional configurations

Union multiple connectors

If you have multiple reddit_ads connectors in Fivetran and would like to use this package on all of them simultaneously, we have provided functionality to do so. The package will union all of the data together and pass the unioned table into the transformations. You will be able to see which source it came from in the source_relation column of each model. To use this functionality, you will need to set either the reddit_ads_union_schemas OR reddit_ads_union_databases variables (cannot do both) in your root dbt_project.yml file:

vars:
    reddit_ads_union_schemas: ['reddit_ads_usa','reddit_ads_canada'] # use this if the data is in different schemas/datasets of the same database/project
    reddit_ads_union_databases: ['reddit_ads_usa','reddit_ads_canada'] # use this if the data is in different databases/projects but uses the same schema name

Please be aware that the native source.yml connection set up in the package will not function when the union schema/database feature is utilized. Although the data will be correctly combined, you will not observe the sources linked to the package models in the Directed Acyclic Graph (DAG). This happens because the package includes only one defined source.yml.

To connect your multiple schema/database sources to the package models, follow the steps outlined in the Union Data Defined Sources Configuration section of the Fivetran Utils documentation for the union_data macro. This will ensure a proper configuration and correct visualization of connections in the DAG.

Passing Through Additional Metrics

By default, this package will select clicks, impressions, and spend from the source reporting tables to store into the staging models. If you would like to pass through additional metrics to the staging models, add the following configurations to your dbt_project.yml file. These variables allow the pass-through fields to be aliased (alias) if desired, but not required. Use the following format for declaring the respective pass-through variables:

NOTE Ensure you exercised due diligence when adding metrics to these models. The metrics added by default (clicks, impressions, and cost) have been vetted by the Fivetran team maintaining this package for accuracy. There are metrics included within the source reports, for example, metric averages, which may be inaccurately represented at the grain for reports created in this package. You want to ensure whichever metrics you pass through are indeed appropriate to aggregate at the respective reporting levels provided in this package.

vars:
    reddit_ads__account_passthrough_metrics: 
      - name: "custom_field_1"
        alias: "custom_field"
    reddit_ads__campaign_passthrough_metrics:
      - name: "this_field"
    reddit_ads__ad_group_passthrough_metrics:
      - name: "unique_string_field"
    reddit_ads__ad_passthrough_metrics: 
      - name: "new_custom_field"
        alias: "custom_field"
      - name: "a_second_field"

Change the build schema

By default, this package builds the Reddit Ads staging models within a schema titled (<target_schema> + _reddit_ads_source) in your destination. If this is not where you would like your Reddit Ads staging data to be written to, add the following configuration to your root dbt_project.yml file:

models:
    reddit_ads_source:
      +schema: my_new_schema_name # leave blank for just the target_schema

Change the source table references

If an individual source table has a different name than the package expects, add the table name as it appears in your destination to the respective variable:

IMPORTANT: See this project's dbt_project.yml variable declarations to see the expected names.

vars:
    reddit_ads_<default_source_table_name>_identifier: your_table_name 

(Optional) Step 5: Orchestrate your models with Fivetran Transformations for dbt Core™

Expand for more details

Fivetran offers the ability for you to orchestrate your dbt project through Fivetran Transformations for dbt Core™. Learn how to set up your project for orchestration through Fivetran in our Transformations for dbt Core™ setup guides.

🔍 Does this package have dependencies?

This dbt package is dependent on the following dbt packages. Please be aware that these dependencies are installed by default within this package. For more information on the following packages, refer to the dbt hub site.

IMPORTANT: If you have any of these dependent packages in your own packages.yml file, we highly recommend that you remove them from your root packages.yml to avoid package version conflicts.

packages:
    - package: fivetran/fivetran_utils
      version: [">=0.4.0", "<0.5.0"]

    - package: dbt-labs/dbt_utils
      version: [">=1.0.0", "<2.0.0"]

    - package: dbt-labs/spark_utils
      version: [">=0.3.0", "<0.4.0"]

🙌 How is this package maintained and can I contribute?

Package Maintenance

The Fivetran team maintaining this package only maintains the latest version of the package. We highly recommend that you stay consistent with the latest version of the package and refer to the CHANGELOG and release notes for more information on changes across versions.

Contributions

A small team of analytics engineers at Fivetran develops these dbt packages. However, the packages are made better by community contributions!

We highly encourage and welcome contributions to this package. Check out this dbt Discourse article to learn how to contribute to a dbt package!

🏪 Are there any resources available?

  • If you have questions or want to reach out for help, please refer to the GitHub Issue section to find the right avenue of support for you.
  • If you would like to provide feedback to the dbt package team at Fivetran or would like to request a new dbt package, fill out our Feedback Form.
  • Have questions or want to just say hi? Book a time during our office hours on Calendly or email us at [email protected].

dbt_reddit_ads_source's People

Contributors

5tran-alexil avatar fivetran-catfritz avatar fivetran-joemarkiewicz avatar fivetran-reneeli avatar

Watchers

 avatar  avatar

Forkers

5tran-alexil

dbt_reddit_ads_source's Issues

[Feature] Add documentation on differences among aggregations across different grains

Copied from fivetran/dbt_ad_reporting #92.

Is there an existing feature request for this?

  • I have searched the existing issues

Describe the Feature

Some customers have brought up concerns on why sums are different across different grains, for example why spend is not the same summed up across the ad level versus the campaign level.

Example from Joe regarding a recent customer inquiry:

"The reason for this discrepancy is due to not all ads being served at the ad level. There are some ads that are only served at the ad group/campaign/etc. levels. This means that you can have ads sent at the campaign level and that counts towards your total spend. However, since the ad was never sent at an individual ad level, it will not be included.
This was a large reason for us breaking the ad reporting package into separate hierarchical end models. Because we found when we only used the ad level, we were missing data as some ads were not served at an ad level, but were served at a campaign level."

We should add more context like above to our ad packages READMEs as a proactive measure.

Describe alternatives you've considered

No response

Are you interested in contributing this feature?

  • Yes.
  • Yes, but I will need assistance and will schedule time during your office hours for guidance.
  • No.

Anything else?

No response

[Feature] Add union schema capability

Copied from fivetran/dbt_facebook_ads_source #29.

Is there an existing feature request for this?

  • I have searched the existing issues

Describe the Feature

Issue for adding the union schema capability.

Describe alternatives you've considered

No response

Are you interested in contributing this feature?

  • Yes.
  • Yes, but I will need assistance and will schedule time during your office hours for guidance.
  • No.

Anything else?

No response

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.