Giter Club home page Giter Club logo

sktime's Introduction

travis_ appveyor_ azure_ pypi_ gitter_ binder_ zenodo_

sktime

sktime is Python toolbox for machine learning with time series. We currently support:

  • Forecasting,
  • Time series classification,
  • Time series regression.

sktime provides dedicated time series algorithms and scikit-learn compatible tools for building, tuning, and evaluating composite models.

For deep learning methods, see our companion package: sktime-dl.


Installation

The package is available via PyPI using:

pip install sktime

The package is actively being developed and some features may not be stable yet.

Development Version

To install the development version, please see our advanced installation instructions.


Quickstart

Forecasting

import numpy as np
from sktime.datasets import load_airline
from sktime.forecasting.theta import ThetaForecaster
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.performance_metrics.forecasting import smape_loss

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = np.arange(1, len(y_test) + 1)  # forecasting horizon
forecaster = ThetaForecaster()
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
smape_loss(y_test, y_pred)
>>> 0.1722386848882188

For more, check out the forecasting tutorial <https://github .com/alan-turing-institute/sktime/blob/master/examples/01_forecasting .ipynb>__.

Time Series Classification

from sktime.datasets import load_arrow_head
from sktime.classification.compose import TimeSeriesForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_arrow_head(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
classifier = TimeSeriesForestClassifier()
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
accuracy_score(y_test, y_pred)
>>> 0.7924528301886793

For more, check out the time series classification tutorial <https://github .com/alan-turing-institute/sktime/blob/master/examples /02_classification_univariate.ipynb>__.


Documentation


API Overview

sktime is a unified toolbox for machine learning with time series. Time series give rise to multiple learning tasks (e.g. forecasting and time series classification). The goal of sktime is to provide all the necessary to solve these tasks, including dedicated time series algorithms as well as tools for building, tuning and evaluating composite models.

Many of these tasks are related, and an algorithm that can solve one of them can often be re-used to help solve another one, an idea called reduction. sktime's unified interface allows to easily adapt an algorithm for one task to another.

For example, to use a regression algorithm to solve a forecasting task, we can simply write:

import numpy as np
from sktime.datasets import load_airline
from sktime.forecasting.compose import ReducedRegressionForecaster
from sklearn.ensemble import RandomForestRegressor
from sktime.forecasting.model_selection import temporal_train_test_split
from sktime.performance_metrics.forecasting import smape_loss

y = load_airline()
y_train, y_test = temporal_train_test_split(y)
fh = np.arange(1, len(y_test) + 1)  # forecasting horizon
regressor = RandomForestRegressor()
forecaster = ReducedRegressionForecaster(regressor)
forecaster.fit(y_train)
y_pred = forecaster.predict(fh)
smape_loss(y_test, y_pred)

For more details, check out our paper.

Currently, sktime provides:

  • State-of-the-art algorithms for time series classification and regression, ported from the Java-based tsml toolkit, as well as forecasting,
  • Transformers, including single-series transformations (e.g. detrending or deseasonalization) and series-as-features transformations (e.g. feature extractors), as well as tools to compose different transformers,
  • Pipelining,
  • Tuning,
  • Ensembling, such as a fully customisable random forest for time-series classification and regression, as well as ensembling for multivariate problems,

For a list of implemented methods, see our estimator overview.

In addition, sktime includes an experimental high-level API that unifies multiple learning tasks, partially inspired by the APIs of mlr and openML.


Development Roadmap

sktime is under active development. We're looking for new contributors, all contributions are welcome!

  1. Multivariate/panel forecasting based on a modified pysf API,
  2. Unsupervised learning, including time series clustering,
  3. Time series annotation, including segmentation and outlier detection,
  4. Specialised data container for efficient handling of time series/panel data in a modelling workflow and separation of time series meta-data,
  5. Probabilistic modelling framework for time series, including survival and point process models based on an adapted skpro interface.

For more details, read this issue.


How to contribute

For former and current contributors, see our overview.


How to cite sktime

If you use sktime in a scientific publication, we would appreciate citations to the following paper:

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, Franz Király (2019): “sktime: A Unified Interface for Machine Learning with Time Series”

Bibtex entry:

@inproceedings{sktime,
    author = {L{\"{o}}ning, Markus and Bagnall, Anthony and Ganesh, Sajaysurya and Kazakov, Viktor and Lines, Jason and Kir{\'{a}}ly, Franz J},
    booktitle = {Workshop on Systems for ML at NeurIPS 2019},
    title = {{sktime: A Unified Interface for Machine Learning with Time Series}},
    date = {2019},
}

sktime's People

Contributors

aa25desh avatar claudiasanches avatar dasgupsa avatar fkiraly avatar goastler avatar jasonlines avatar jesellier avatar matteogales avatar matthewmiddlehurst avatar mloning avatar oleskiewicz avatar pangoraw avatar prockenschaub avatar sajaysurya avatar simone-pignotti avatar tonybagnall avatar viktorkaz avatar

Stargazers

 avatar  avatar

Watchers

 avatar

Forkers

microplc

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.