Giter Club home page Giter Club logo

gods's Introduction

GoDoc Build Status Go Report Card codecov Sourcegraph Release Quality Gate Status PyPI

GoDS (Go Data Structures)

Implementation of various data structures and algorithms in Go.

Data Structures

Containers

All data structures implement the container interface with the following methods:

type Container interface {
	Empty() bool
	Size() int
	Clear()
	Values() []interface{}
	String() string
}

Containers are either ordered or unordered. All ordered containers provide stateful iterators and some of them allow enumerable functions.

Data Structure Ordered Iterator Enumerable Referenced by
Lists
ArrayList yes yes* yes index
SinglyLinkedList yes yes yes index
DoublyLinkedList yes yes* yes index
Sets
HashSet no no no index
TreeSet yes yes* yes index
LinkedHashSet yes yes* yes index
Stacks
LinkedListStack yes yes no index
ArrayStack yes yes* no index
Maps
HashMap no no no key
TreeMap yes yes* yes key
LinkedHashMap yes yes* yes key
HashBidiMap no no no key*
TreeBidiMap yes yes* yes key*
Trees
RedBlackTree yes yes* no key
AVLTree yes yes* no key
BTree yes yes* no key
BinaryHeap yes yes* no index
Queues
LinkedListQueue yes yes no index
ArrayQueue yes yes* no index
CircularBuffer yes yes* no index
PriorityQueue yes yes* no index
*reversible *bidirectional

Lists

A list is a data structure that stores values and may have repeated values.

Implements Container interface.

type List interface {
	Get(index int) (interface{}, bool)
	Remove(index int)
	Add(values ...interface{})
	Contains(values ...interface{}) bool
	Sort(comparator utils.Comparator)
	Swap(index1, index2 int)
	Insert(index int, values ...interface{})
	Set(index int, value interface{})

	containers.Container
	// Empty() bool
	// Size() int
	// Clear()
	// Values() []interface{}
    // String() string
}

ArrayList

A list backed by a dynamic array that grows and shrinks implicitly.

Implements List, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"github.com/emirpasic/gods/lists/arraylist"
	"github.com/emirpasic/gods/utils"
)

func main() {
	list := arraylist.New()
	list.Add("a")                         // ["a"]
	list.Add("c", "b")                    // ["a","c","b"]
	list.Sort(utils.StringComparator)     // ["a","b","c"]
	_, _ = list.Get(0)                    // "a",true
	_, _ = list.Get(100)                  // nil,false
	_ = list.Contains("a", "b", "c")      // true
	_ = list.Contains("a", "b", "c", "d") // false
	list.Swap(0, 1)                       // ["b","a",c"]
	list.Remove(2)                        // ["b","a"]
	list.Remove(1)                        // ["b"]
	list.Remove(0)                        // []
	list.Remove(0)                        // [] (ignored)
	_ = list.Empty()                      // true
	_ = list.Size()                       // 0
	list.Add("a")                         // ["a"]
	list.Clear()                          // []
	list.Insert(0, "b")                   // ["b"]
	list.Insert(0, "a")                   // ["a","b"]
}

SinglyLinkedList

A list where each element points to the next element in the list.

Implements List, IteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	sll "github.com/emirpasic/gods/lists/singlylinkedlist"
	"github.com/emirpasic/gods/utils"
)

func main() {
	list := sll.New()
	list.Add("a")                         // ["a"]
	list.Add("c", "b")                    // ["a","c","b"]
	list.Sort(utils.StringComparator)     // ["a","b","c"]
	_, _ = list.Get(0)                    // "a",true
	_, _ = list.Get(100)                  // nil,false
	_ = list.Contains("a", "b", "c")      // true
	_ = list.Contains("a", "b", "c", "d") // false
	list.Swap(0, 1)                       // ["b","a",c"]
	list.Remove(2)                        // ["b","a"]
	list.Remove(1)                        // ["b"]
	list.Remove(0)                        // []
	list.Remove(0)                        // [] (ignored)
	_ = list.Empty()                      // true
	_ = list.Size()                       // 0
	list.Add("a")                         // ["a"]
	list.Clear()                          // []
	list.Insert(0, "b")                   // ["b"]
	list.Insert(0, "a")                   // ["a","b"]
}

DoublyLinkedList

A list where each element points to the next and previous elements in the list.

Implements List, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	dll "github.com/emirpasic/gods/lists/doublylinkedlist"
	"github.com/emirpasic/gods/utils"
)

func main() {
	list := dll.New()
	list.Add("a")                         // ["a"]
	list.Add("c", "b")                    // ["a","c","b"]
	list.Sort(utils.StringComparator)     // ["a","b","c"]
	_, _ = list.Get(0)                    // "a",true
	_, _ = list.Get(100)                  // nil,false
	_ = list.Contains("a", "b", "c")      // true
	_ = list.Contains("a", "b", "c", "d") // false
	list.Swap(0, 1)                       // ["b","a",c"]
	list.Remove(2)                        // ["b","a"]
	list.Remove(1)                        // ["b"]
	list.Remove(0)                        // []
	list.Remove(0)                        // [] (ignored)
	_ = list.Empty()                      // true
	_ = list.Size()                       // 0
	list.Add("a")                         // ["a"]
	list.Clear()                          // []
	list.Insert(0, "b")                   // ["b"]
	list.Insert(0, "a")                   // ["a","b"]
}

Sets

A set is a data structure that can store elements and has no repeated values. It is a computer implementation of the mathematical concept of a finite set. Unlike most other collection types, rather than retrieving a specific element from a set, one typically tests an element for membership in a set. This structure is often used to ensure that no duplicates are present in a container.

Set additionally allow set operations such as intersection, union, difference, etc.

Implements Container interface.

type Set interface {
	Add(elements ...interface{})
	Remove(elements ...interface{})
	Contains(elements ...interface{}) bool
    // Intersection(another *Set) *Set
    // Union(another *Set) *Set
    // Difference(another *Set) *Set
	
	containers.Container
	// Empty() bool
	// Size() int
	// Clear()
	// Values() []interface{}
	// String() string
}

HashSet

A set backed by a hash table (actually a Go's map). It makes no guarantees as to the iteration order of the set.

Implements Set, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/sets/hashset"

func main() {
	set := hashset.New()   // empty
	set.Add(1)             // 1
	set.Add(2, 2, 3, 4, 5) // 3, 1, 2, 4, 5 (random order, duplicates ignored)
	set.Remove(4)          // 5, 3, 2, 1 (random order)
	set.Remove(2, 3)       // 1, 5 (random order)
	set.Contains(1)        // true
	set.Contains(1, 5)     // true
	set.Contains(1, 6)     // false
	_ = set.Values()       // []int{5,1} (random order)
	set.Clear()            // empty
	set.Empty()            // true
	set.Size()             // 0
}

TreeSet

A set backed by a red-black tree to keep the elements ordered with respect to the comparator.

Implements Set, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/sets/treeset"

func main() {
	set := treeset.NewWithIntComparator() // empty (keys are of type int)
	set.Add(1)                            // 1
	set.Add(2, 2, 3, 4, 5)                // 1, 2, 3, 4, 5 (in order, duplicates ignored)
	set.Remove(4)                         // 1, 2, 3, 5 (in order)
	set.Remove(2, 3)                      // 1, 5 (in order)
	set.Contains(1)                       // true
	set.Contains(1, 5)                    // true
	set.Contains(1, 6)                    // false
	_ = set.Values()                      // []int{1,5} (in order)
	set.Clear()                           // empty
	set.Empty()                           // true
	set.Size()                            // 0
}

LinkedHashSet

A set that preserves insertion-order. Data structure is backed by a hash table to store values and doubly-linked list to store insertion ordering.

Implements Set, ReverseIteratorWithIndex, EnumerableWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/sets/linkedhashset"

func main() {
	set := linkedhashset.New() // empty
	set.Add(5)                 // 5
	set.Add(4, 4, 3, 2, 1)     // 5, 4, 3, 2, 1 (in insertion-order, duplicates ignored)
	set.Add(4)                 // 5, 4, 3, 2, 1 (duplicates ignored, insertion-order unchanged)
	set.Remove(4)              // 5, 3, 2, 1 (in insertion-order)
	set.Remove(2, 3)           // 5, 1 (in insertion-order)
	set.Contains(1)            // true
	set.Contains(1, 5)         // true
	set.Contains(1, 6)         // false
	_ = set.Values()           // []int{5, 1} (in insertion-order)
	set.Clear()                // empty
	set.Empty()                // true
	set.Size()                 // 0
}

Stacks

A stack that represents a last-in-first-out (LIFO) data structure. The usual push and pop operations are provided, as well as a method to peek at the top item on the stack.

Implements Container interface.

type Stack interface {
	Push(value interface{})
	Pop() (value interface{}, ok bool)
	Peek() (value interface{}, ok bool)

	containers.Container
	// Empty() bool
	// Size() int
	// Clear()
	// Values() []interface{}
	// String() string
}

LinkedListStack

A stack based on a linked list.

Implements Stack, IteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import lls "github.com/emirpasic/gods/stacks/linkedliststack"

func main() {
	stack := lls.New()  // empty
	stack.Push(1)       // 1
	stack.Push(2)       // 1, 2
	stack.Values()      // 2, 1 (LIFO order)
	_, _ = stack.Peek() // 2,true
	_, _ = stack.Pop()  // 2, true
	_, _ = stack.Pop()  // 1, true
	_, _ = stack.Pop()  // nil, false (nothing to pop)
	stack.Push(1)       // 1
	stack.Clear()       // empty
	stack.Empty()       // true
	stack.Size()        // 0
}

ArrayStack

A stack based on a array list.

Implements Stack, IteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/stacks/arraystack"

func main() {
	stack := arraystack.New() // empty
	stack.Push(1)             // 1
	stack.Push(2)             // 1, 2
	stack.Values()            // 2, 1 (LIFO order)
	_, _ = stack.Peek()       // 2,true
	_, _ = stack.Pop()        // 2, true
	_, _ = stack.Pop()        // 1, true
	_, _ = stack.Pop()        // nil, false (nothing to pop)
	stack.Push(1)             // 1
	stack.Clear()             // empty
	stack.Empty()             // true
	stack.Size()              // 0
}

Maps

A Map is a data structure that maps keys to values. A map cannot contain duplicate keys and each key can map to at most one value.

Implements Container interface.

type Map interface {
	Put(key interface{}, value interface{})
	Get(key interface{}) (value interface{}, found bool)
	Remove(key interface{})
	Keys() []interface{}

	containers.Container
	// Empty() bool
	// Size() int
	// Clear()
	// Values() []interface{}
	// String() string
}

A BidiMap is an extension to the Map. A bidirectional map (BidiMap), also called a hash bag, is an associative data structure in which the key-value pairs form a one-to-one relation. This relation works in both directions by allow the value to also act as a key to key, e.g. a pair (a,b) thus provides a coupling between 'a' and 'b' so that 'b' can be found when 'a' is used as a key and 'a' can be found when 'b' is used as a key.

type BidiMap interface {
	GetKey(value interface{}) (key interface{}, found bool)

	Map
}

HashMap

A map based on hash tables. Keys are unordered.

Implements Map, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/maps/hashmap"

func main() {
	m := hashmap.New() // empty
	m.Put(1, "x")      // 1->x
	m.Put(2, "b")      // 2->b, 1->x (random order)
	m.Put(1, "a")      // 2->b, 1->a (random order)
	_, _ = m.Get(2)    // b, true
	_, _ = m.Get(3)    // nil, false
	_ = m.Values()     // []interface {}{"b", "a"} (random order)
	_ = m.Keys()       // []interface {}{1, 2} (random order)
	m.Remove(1)        // 2->b
	m.Clear()          // empty
	m.Empty()          // true
	m.Size()           // 0
}

TreeMap

A map based on red-black tree. Keys are ordered with respect to the comparator.

Implements Map, ReverseIteratorWithIndex, EnumerableWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/maps/treemap"

func main() {
	m := treemap.NewWithIntComparator() // empty (keys are of type int)
	m.Put(1, "x")                       // 1->x
	m.Put(2, "b")                       // 1->x, 2->b (in order)
	m.Put(1, "a")                       // 1->a, 2->b (in order)
	_, _ = m.Get(2)                     // b, true
	_, _ = m.Get(3)                     // nil, false
	_ = m.Values()                      // []interface {}{"a", "b"} (in order)
	_ = m.Keys()                        // []interface {}{1, 2} (in order)
	m.Remove(1)                         // 2->b
	m.Clear()                           // empty
	m.Empty()                           // true
	m.Size()                            // 0

	// Other:
	m.Min() // Returns the minimum key and its value from map.
	m.Max() // Returns the maximum key and its value from map.
}

LinkedHashMap

A map that preserves insertion-order. It is backed by a hash table to store values and doubly-linked list to store ordering.

Implements Map, ReverseIteratorWithIndex, EnumerableWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/maps/linkedhashmap"

func main() {
	m := linkedhashmap.New() // empty (keys are of type int)
	m.Put(2, "b")            // 2->b
	m.Put(1, "x")            // 2->b, 1->x (insertion-order)
	m.Put(1, "a")            // 2->b, 1->a (insertion-order)
	_, _ = m.Get(2)          // b, true
	_, _ = m.Get(3)          // nil, false
	_ = m.Values()           // []interface {}{"b", "a"} (insertion-order)
	_ = m.Keys()             // []interface {}{2, 1} (insertion-order)
	m.Remove(1)              // 2->b
	m.Clear()                // empty
	m.Empty()                // true
	m.Size()                 // 0
}

HashBidiMap

A map based on two hashmaps. Keys are unordered.

Implements BidiMap, JSONSerializer and JSONDeserializer interfaces.

package main

import "github.com/emirpasic/gods/maps/hashbidimap"

func main() {
	m := hashbidimap.New() // empty
	m.Put(1, "x")          // 1->x
	m.Put(3, "b")          // 1->x, 3->b (random order)
	m.Put(1, "a")          // 1->a, 3->b (random order)
	m.Put(2, "b")          // 1->a, 2->b (random order)
	_, _ = m.GetKey("a")   // 1, true
	_, _ = m.Get(2)        // b, true
	_, _ = m.Get(3)        // nil, false
	_ = m.Values()         // []interface {}{"a", "b"} (random order)
	_ = m.Keys()           // []interface {}{1, 2} (random order)
	m.Remove(1)            // 2->b
	m.Clear()              // empty
	m.Empty()              // true
	m.Size()               // 0
}

TreeBidiMap

A map based on red-black tree. This map guarantees that the map will be in both ascending key and value order. Other than key and value ordering, the goal with this structure is to avoid duplication of elements (unlike in HashBidiMap), which can be significant if contained elements are large.

Implements BidiMap, ReverseIteratorWithIndex, EnumerableWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"github.com/emirpasic/gods/maps/treebidimap"
	"github.com/emirpasic/gods/utils"
)

func main() {
	m := treebidimap.NewWith(utils.IntComparator, utils.StringComparator)
	m.Put(1, "x")        // 1->x
	m.Put(3, "b")        // 1->x, 3->b (ordered)
	m.Put(1, "a")        // 1->a, 3->b (ordered)
	m.Put(2, "b")        // 1->a, 2->b (ordered)
	_, _ = m.GetKey("a") // 1, true
	_, _ = m.Get(2)      // b, true
	_, _ = m.Get(3)      // nil, false
	_ = m.Values()       // []interface {}{"a", "b"} (ordered)
	_ = m.Keys()         // []interface {}{1, 2} (ordered)
	m.Remove(1)          // 2->b
	m.Clear()            // empty
	m.Empty()            // true
	m.Size()             // 0
}

Trees

A tree is a widely used data data structure that simulates a hierarchical tree structure, with a root value and subtrees of children, represented as a set of linked nodes; thus no cyclic links.

Implements Container interface.

type Tree interface {
	containers.Container
	// Empty() bool
	// Size() int
	// Clear()
	// Values() []interface{}
	// String() string
}

RedBlackTree

A redโ€“black tree is a binary search tree with an extra bit of data per node, its color, which can be either red or black. The extra bit of storage ensures an approximately balanced tree by constraining how nodes are colored from any path from the root to the leaf. Thus, it is a data structure which is a type of self-balancing binary search tree.

The balancing of the tree is not perfect but it is good enough to allow it to guarantee searching in O(log n) time, where n is the total number of elements in the tree. The insertion and deletion operations, along with the tree rearrangement and recoloring, are also performed in O(log n) time. Wikipedia

Implements Tree, ReverseIteratorWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"fmt"
	rbt "github.com/emirpasic/gods/trees/redblacktree"
)

func main() {
	tree := rbt.NewWithIntComparator() // empty (keys are of type int)

	tree.Put(1, "x") // 1->x
	tree.Put(2, "b") // 1->x, 2->b (in order)
	tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
	tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
	tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
	tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
	tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)

	fmt.Println(tree)
	//
	//  RedBlackTree
	//  โ”‚           โ”Œโ”€โ”€ 6
	//	โ”‚       โ”Œโ”€โ”€ 5
	//	โ”‚   โ”Œโ”€โ”€ 4
	//	โ”‚   โ”‚   โ””โ”€โ”€ 3
	//	โ””โ”€โ”€ 2
	//		โ””โ”€โ”€ 1

	_ = tree.Values() // []interface {}{"a", "b", "c", "d", "e", "f"} (in order)
	_ = tree.Keys()   // []interface {}{1, 2, 3, 4, 5, 6} (in order)

	tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f (in order)
	fmt.Println(tree)
	//
	//  RedBlackTree
	//  โ”‚       โ”Œโ”€โ”€ 6
	//  โ”‚   โ”Œโ”€โ”€ 5
	//  โ””โ”€โ”€ 4
	//      โ”‚   โ”Œโ”€โ”€ 3
	//      โ””โ”€โ”€ 1

	tree.Clear() // empty
	tree.Empty() // true
	tree.Size()  // 0

	// Other:
	tree.Left() // gets the left-most (min) node
	tree.Right() // get the right-most (max) node
	tree.Floor(1) // get the floor node
	tree.Ceiling(1) // get the ceiling node
}

Extending the red-black tree's functionality has been demonstrated in the following example.

AVLTree

AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Lookup, insertion, and deletion all take O(log n) time in both the average and worst cases, where n is the number of nodes in the tree prior to the operation. Insertions and deletions may require the tree to be rebalanced by one or more tree rotations.

AVL trees are often compared with redโ€“black trees because both support the same set of operations and take O(log n) time for the basic operations. For lookup-intensive applications, AVL trees are faster than redโ€“black trees because they are more strictly balanced. Wikipedia

Implements Tree, ReverseIteratorWithKey, JSONSerializer and JSONDeserializer interfaces.


AVL tree with balance factors (green)

package main

import (
	"fmt"
	avl "github.com/emirpasic/gods/trees/avltree"
)

func main() {
	tree := avl.NewWithIntComparator() // empty(keys are of type int)

	tree.Put(1, "x") // 1->x
	tree.Put(2, "b") // 1->x, 2->b (in order)
	tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
	tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
	tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
	tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
	tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)

	fmt.Println(tree)
	//
	//  AVLTree
	//  โ”‚       โ”Œโ”€โ”€ 6
	//  โ”‚   โ”Œโ”€โ”€ 5
	//  โ””โ”€โ”€ 4
	//      โ”‚   โ”Œโ”€โ”€ 3
	//      โ””โ”€โ”€ 2
	//          โ””โ”€โ”€ 1


	_ = tree.Values() // []interface {}{"a", "b", "c", "d", "e", "f"} (in order)
	_ = tree.Keys()   // []interface {}{1, 2, 3, 4, 5, 6} (in order)

	tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f (in order)
	fmt.Println(tree)
	//
	//  AVLTree
	//  โ”‚       โ”Œโ”€โ”€ 6
	//  โ”‚   โ”Œโ”€โ”€ 5
	//  โ””โ”€โ”€ 4
	//      โ””โ”€โ”€ 3
	//          โ””โ”€โ”€ 1

	tree.Clear() // empty
	tree.Empty() // true
	tree.Size()  // 0
}

BTree

B-tree is a self-balancing tree data structure that keeps data sorted and allows searches, sequential access, insertions, and deletions in logarithmic time. The B-tree is a generalization of a binary search tree in that a node can have more than two children.

According to Knuth's definition, a B-tree of order m is a tree which satisfies the following properties:

  • Every node has at most m children.
  • Every non-leaf node (except root) has at least โŒˆm/2โŒ‰ children.
  • The root has at least two children if it is not a leaf node.
  • A non-leaf node with k children contains kโˆ’1 keys.
  • All leaves appear in the same level

Each internal nodeโ€™s keys act as separation values which divide its subtrees. For example, if an internal node has 3 child nodes (or subtrees) then it must have 2 keys: a1 and a2. All values in the leftmost subtree will be less than a1, all values in the middle subtree will be between a1 and a2, and all values in the rightmost subtree will be greater than a2.Wikipedia

Implements Tree, ReverseIteratorWithKey, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"fmt"
	"github.com/emirpasic/gods/trees/btree"
)

func main() {
	tree := btree.NewWithIntComparator(3) // empty (keys are of type int)

	tree.Put(1, "x") // 1->x
	tree.Put(2, "b") // 1->x, 2->b (in order)
	tree.Put(1, "a") // 1->a, 2->b (in order, replacement)
	tree.Put(3, "c") // 1->a, 2->b, 3->c (in order)
	tree.Put(4, "d") // 1->a, 2->b, 3->c, 4->d (in order)
	tree.Put(5, "e") // 1->a, 2->b, 3->c, 4->d, 5->e (in order)
	tree.Put(6, "f") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f (in order)
	tree.Put(7, "g") // 1->a, 2->b, 3->c, 4->d, 5->e, 6->f, 7->g (in order)

	fmt.Println(tree)
	// BTree
	//         1
	//     2
	//         3
	// 4
	//         5
	//     6
	//         7

	_ = tree.Values() // []interface {}{"a", "b", "c", "d", "e", "f", "g"} (in order)
	_ = tree.Keys()   // []interface {}{1, 2, 3, 4, 5, 6, 7} (in order)

	tree.Remove(2) // 1->a, 3->c, 4->d, 5->e, 6->f, 7->g (in order)
	fmt.Println(tree)
	// BTree
	//     1
	//     3
	// 4
	//     5
	// 6
	//     7

	tree.Clear() // empty
	tree.Empty() // true
	tree.Size()  // 0

	// Other:
	tree.Height() // gets the height of the tree
	tree.Left() // gets the left-most (min) node
	tree.LeftKey() // get the left-most (min) node's key
	tree.LeftValue() // get the left-most (min) node's value
	tree.Right() // get the right-most (max) node
	tree.RightKey() // get the right-most (max) node's key
	tree.RightValue() // get the right-most (max) node's value
}

BinaryHeap

A binary heap is a tree created using a binary tree. It can be seen as a binary tree with two additional constraints:

  • Shape property:

    A binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.

  • Heap property:

    All nodes are either greater than or equal to or less than or equal to each of its children, according to a comparison predicate defined for the heap. Wikipedia

Implements Tree, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
	"github.com/emirpasic/gods/trees/binaryheap"
	"github.com/emirpasic/gods/utils"
)

func main() {

	// Min-heap
	heap := binaryheap.NewWithIntComparator() // empty (min-heap)
	heap.Push(2)                              // 2
	heap.Push(3)                              // 2, 3
	heap.Push(1)                              // 1, 3, 2
	heap.Values()                             // 1, 3, 2
	_, _ = heap.Peek()                        // 1,true
	_, _ = heap.Pop()                         // 1, true
	_, _ = heap.Pop()                         // 2, true
	_, _ = heap.Pop()                         // 3, true
	_, _ = heap.Pop()                         // nil, false (nothing to pop)
	heap.Push(1)                              // 1
	heap.Clear()                              // empty
	heap.Empty()                              // true
	heap.Size()                               // 0

	// Max-heap
	inverseIntComparator := func(a, b interface{}) int {
		return -utils.IntComparator(a, b)
	}
	heap = binaryheap.NewWith(inverseIntComparator) // empty (min-heap)
	heap.Push(2, 3, 1)                              // 3, 2, 1 (bulk optimized)
	heap.Values()                                   // 3, 2, 1
}

Queues

A queue that represents a first-in-first-out (FIFO) data structure. The usual enqueue and dequeue operations are provided, as well as a method to peek at the first item in the queue.

Implements Container interface.

type Queue interface {
	Enqueue(value interface{})
	Dequeue() (value interface{}, ok bool)
	Peek() (value interface{}, ok bool)

	containers.Container
	// Empty() bool
	// Size() int
	// Clear()
	// Values() []interface{}
	// String() string
}

LinkedListQueue

A queue based on a linked list.

Implements Queue, IteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import llq "github.com/emirpasic/gods/queues/linkedlistqueue"

// LinkedListQueueExample to demonstrate basic usage of LinkedListQueue
func main() {
    queue := llq.New()     // empty
    queue.Enqueue(1)       // 1
    queue.Enqueue(2)       // 1, 2
    _ = queue.Values()     // 1, 2 (FIFO order)
    _, _ = queue.Peek()    // 1,true
    _, _ = queue.Dequeue() // 1, true
    _, _ = queue.Dequeue() // 2, true
    _, _ = queue.Dequeue() // nil, false (nothing to deque)
    queue.Enqueue(1)       // 1
    queue.Clear()          // empty
    queue.Empty()          // true
    _ = queue.Size()       // 0
}

ArrayQueue

A queue based on a array list.

Implements Queue, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import aq "github.com/emirpasic/gods/queues/arrayqueue"

// ArrayQueueExample to demonstrate basic usage of ArrayQueue
func main() {
    queue := aq.New()      // empty
    queue.Enqueue(1)       // 1
    queue.Enqueue(2)       // 1, 2
    _ = queue.Values()     // 1, 2 (FIFO order)
    _, _ = queue.Peek()    // 1,true
    _, _ = queue.Dequeue() // 1, true
    _, _ = queue.Dequeue() // 2, true
    _, _ = queue.Dequeue() // nil, false (nothing to deque)
    queue.Enqueue(1)       // 1
    queue.Clear()          // empty
    queue.Empty()          // true
    _ = queue.Size()       // 0
}

CircularBuffer

A circular buffer, circular queue, cyclic buffer or ring buffer is a data structure that uses a single, fixed-size buffer as if it were connected end-to-end. This structure lends itself easily to buffering data streams.

Implements Queue, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import cb "github.com/emirpasic/gods/queues/circularbuffer"

// CircularBufferExample to demonstrate basic usage of CircularBuffer
func main() {
    queue := cb.New(3)     // empty (max size is 3)
    queue.Enqueue(1)       // 1
    queue.Enqueue(2)       // 1, 2
    queue.Enqueue(3)       // 1, 2, 3
    _ = queue.Values()     // 1, 2, 3
    queue.Enqueue(3)       // 4, 2, 3
    _, _ = queue.Peek()    // 4,true
    _, _ = queue.Dequeue() // 4, true
    _, _ = queue.Dequeue() // 2, true
    _, _ = queue.Dequeue() // 3, true
    _, _ = queue.Dequeue() // nil, false (nothing to deque)
    queue.Enqueue(1)       // 1
    queue.Clear()          // empty
    queue.Empty()          // true
    _ = queue.Size()       // 0
}

PriorityQueue

A priority queue is a special type of queue in which each element is associated with a priority value. And, elements are served on the basis of their priority. That is, higher priority elements are served first. However, if elements with the same priority occur, they are served according to their order in the queue.

Implements Queue, ReverseIteratorWithIndex, JSONSerializer and JSONDeserializer interfaces.

package main

import (
  pq "github.com/emirpasic/gods/queues/priorityqueue"
  "github.com/emirpasic/gods/utils"
)

// Element is an entry in the priority queue
type Element struct {
    name     string
    priority int
}

// Comparator function (sort by element's priority value in descending order)
func byPriority(a, b interface{}) int {
    priorityA := a.(Element).priority
    priorityB := b.(Element).priority
    return -utils.IntComparator(priorityA, priorityB) // "-" descending order
}

// PriorityQueueExample to demonstrate basic usage of BinaryHeap
func main() {
    a := Element{name: "a", priority: 1}
    b := Element{name: "b", priority: 2}
    c := Element{name: "c", priority: 3}
    
    queue := pq.NewWith(byPriority) // empty
    queue.Enqueue(a)                // {a 1}
    queue.Enqueue(c)                // {c 3}, {a 1}
    queue.Enqueue(b)                // {c 3}, {b 2}, {a 1}
    _ = queue.Values()              // [{c 3} {b 2} {a 1}]
    _, _ = queue.Peek()             // {c 3} true
    _, _ = queue.Dequeue()          // {c 3} true
    _, _ = queue.Dequeue()          // {b 2} true
    _, _ = queue.Dequeue()          // {a 1} true
    _, _ = queue.Dequeue()          // <nil> false (nothing to dequeue)
    queue.Clear()                   // empty
    _ = queue.Empty()               // true
    _ = queue.Size()                // 0
}

Functions

Various helper functions used throughout the library.

Comparator

Some data structures (e.g. TreeMap, TreeSet) require a comparator function to automatically keep their elements sorted upon insertion. This comparator is necessary during the initalization.

Comparator is defined as:

Return values (int):

negative , if a < b
zero     , if a == b
positive , if a > b

Comparator signature:

type Comparator func(a, b interface{}) int

All common comparators for builtin types are included in the library:

func StringComparator(a, b interface{}) int

func IntComparator(a, b interface{}) int

func Int8Comparator(a, b interface{}) int

func Int16Comparator(a, b interface{}) int

func Int32Comparator(a, b interface{}) int

func Int64Comparator(a, b interface{}) int

func UIntComparator(a, b interface{}) int

func UInt8Comparator(a, b interface{}) int

func UInt16Comparator(a, b interface{}) int

func UInt32Comparator(a, b interface{}) int

func UInt64Comparator(a, b interface{}) int

func Float32Comparator(a, b interface{}) int

func Float64Comparator(a, b interface{}) int

func ByteComparator(a, b interface{}) int

func RuneComparator(a, b interface{}) int

func TimeComparator(a, b interface{}) int

Writing custom comparators is easy:

package main

import (
	"fmt"
	"github.com/emirpasic/gods/sets/treeset"
)

type User struct {
	id   int
	name string
}

// Custom comparator (sort by IDs)
func byID(a, b interface{}) int {

	// Type assertion, program will panic if this is not respected
	c1 := a.(User)
	c2 := b.(User)

	switch {
	case c1.id > c2.id:
		return 1
	case c1.id < c2.id:
		return -1
	default:
		return 0
	}
}

func main() {
	set := treeset.NewWith(byID)

	set.Add(User{2, "Second"})
	set.Add(User{3, "Third"})
	set.Add(User{1, "First"})
	set.Add(User{4, "Fourth"})

	fmt.Println(set) // {1 First}, {2 Second}, {3 Third}, {4 Fourth}
}

Iterator

All ordered containers have stateful iterators. Typically an iterator is obtained by Iterator() function of an ordered container. Once obtained, iterator's Next() function moves the iterator to the next element and returns true if there was a next element. If there was an element, then element's can be obtained by iterator's Value() function. Depending on the ordering type, it's position can be obtained by iterator's Index() or Key() functions. Some containers even provide reversible iterators, essentially the same, but provide another extra Prev() function that moves the iterator to the previous element and returns true if there was a previous element.

Note: it is unsafe to remove elements from container while iterating.

IteratorWithIndex

An iterator whose elements are referenced by an index.

Typical usage:

it := list.Iterator()
for it.Next() {
	index, value := it.Index(), it.Value()
	...
}

Other usages:

if it.First() {
	firstIndex, firstValue := it.Index(), it.Value()
	...
}
for it.Begin(); it.Next(); {
	...
}

Seeking to a specific element:

// Seek function, i.e. find element starting with "b"
seek := func(index int, value interface{}) bool {
    return strings.HasSuffix(value.(string), "b")
}

// Seek to the condition and continue traversal from that point (forward).
// assumes it.Begin() was called.
for found := it.NextTo(seek); found; found = it.Next() {
    index, value := it.Index(), it.Value()
    ...
}

IteratorWithKey

An iterator whose elements are referenced by a key.

Typical usage:

it := tree.Iterator()
for it.Next() {
	key, value := it.Key(), it.Value()
	...
}

Other usages:

if it.First() {
	firstKey, firstValue := it.Key(), it.Value()
	...
}
for it.Begin(); it.Next(); {
	...
}

Seeking to a specific element from the current iterator position:

// Seek function, i.e. find element starting with "b"
seek := func(key interface{}, value interface{}) bool {
    return strings.HasSuffix(value.(string), "b")
}

// Seek to the condition and continue traversal from that point (forward).
// assumes it.Begin() was called.
for found := it.NextTo(seek); found; found = it.Next() {
    key, value := it.Key(), it.Value()
    ...
}

ReverseIteratorWithIndex

An iterator whose elements are referenced by an index. Provides all functions as IteratorWithIndex, but can also be used for reverse iteration.

Typical usage of iteration in reverse:

it := list.Iterator()
for it.End(); it.Prev(); {
	index, value := it.Index(), it.Value()
	...
}

Other usages:

if it.Last() {
	lastIndex, lastValue := it.Index(), it.Value()
	...
}

Seeking to a specific element:

// Seek function, i.e. find element starting with "b"
seek := func(index int, value interface{}) bool {
    return strings.HasSuffix(value.(string), "b")
}

// Seek to the condition and continue traversal from that point (in reverse).
// assumes it.End() was called.
for found := it.PrevTo(seek); found; found = it.Prev() {
    index, value := it.Index(), it.Value()
	...
}

ReverseIteratorWithKey

An iterator whose elements are referenced by a key. Provides all functions as IteratorWithKey, but can also be used for reverse iteration.

Typical usage of iteration in reverse:

it := tree.Iterator()
for it.End(); it.Prev(); {
	key, value := it.Key(), it.Value()
	...
}

Other usages:

if it.Last() {
	lastKey, lastValue := it.Key(), it.Value()
	...
}
// Seek function, i.e. find element starting with "b"
seek := func(key interface{}, value interface{}) bool {
    return strings.HasSuffix(value.(string), "b")
}

// Seek to the condition and continue traversal from that point (in reverse).
// assumes it.End() was called.
for found := it.PrevTo(seek); found; found = it.Prev() {
    key, value := it.Key(), it.Value()
	...
}

Enumerable

Enumerable functions for ordered containers that implement EnumerableWithIndex or EnumerableWithKey interfaces.

EnumerableWithIndex

Enumerable functions for ordered containers whose values can be fetched by an index.

Each

Calls the given function once for each element, passing that element's index and value.

Each(func(index int, value interface{}))

Map

Invokes the given function once for each element and returns a container containing the values returned by the given function.

Map(func(index int, value interface{}) interface{}) Container

Select

Returns a new container containing all elements for which the given function returns a true value.

Select(func(index int, value interface{}) bool) Container

Any

Passes each element of the container to the given function and returns true if the function ever returns true for any element.

Any(func(index int, value interface{}) bool) bool

All

Passes each element of the container to the given function and returns true if the function returns true for all elements.

All(func(index int, value interface{}) bool) bool

Find

Passes each element of the container to the given function and returns the first (index,value) for which the function is true or -1,nil otherwise if no element matches the criteria.

Find(func(index int, value interface{}) bool) (int, interface{})}

Example:

package main

import (
	"fmt"
	"github.com/emirpasic/gods/sets/treeset"
)

func printSet(txt string, set *treeset.Set) {
	fmt.Print(txt, "[ ")
	set.Each(func(index int, value interface{}) {
		fmt.Print(value, " ")
	})
	fmt.Println("]")
}

func main() {
	set := treeset.NewWithIntComparator()
	set.Add(2, 3, 4, 2, 5, 6, 7, 8)
	printSet("Initial", set) // [ 2 3 4 5 6 7 8 ]

	even := set.Select(func(index int, value interface{}) bool {
		return value.(int)%2 == 0
	})
	printSet("Even numbers", even) // [ 2 4 6 8 ]

	foundIndex, foundValue := set.Find(func(index int, value interface{}) bool {
		return value.(int)%2 == 0 && value.(int)%3 == 0
	})
	if foundIndex != -1 {
		fmt.Println("Number divisible by 2 and 3 found is", foundValue, "at index", foundIndex) // value: 6, index: 4
	}

	square := set.Map(func(index int, value interface{}) interface{} {
		return value.(int) * value.(int)
	})
	printSet("Numbers squared", square) // [ 4 9 16 25 36 49 64 ]

	bigger := set.Any(func(index int, value interface{}) bool {
		return value.(int) > 5
	})
	fmt.Println("Set contains a number bigger than 5 is ", bigger) // true

	positive := set.All(func(index int, value interface{}) bool {
		return value.(int) > 0
	})
	fmt.Println("All numbers are positive is", positive) // true

	evenNumbersSquared := set.Select(func(index int, value interface{}) bool {
		return value.(int)%2 == 0
	}).Map(func(index int, value interface{}) interface{} {
		return value.(int) * value.(int)
	})
	printSet("Chaining", evenNumbersSquared) // [ 4 16 36 64 ]
}

EnumerableWithKey

Enumerable functions for ordered containers whose values whose elements are key/value pairs.

Each

Calls the given function once for each element, passing that element's key and value.

Each(func(key interface{}, value interface{}))

Map

Invokes the given function once for each element and returns a container containing the values returned by the given function as key/value pairs.

Map(func(key interface{}, value interface{}) (interface{}, interface{})) Container

Select

Returns a new container containing all elements for which the given function returns a true value.

Select(func(key interface{}, value interface{}) bool) Container

Any

Passes each element of the container to the given function and returns true if the function ever returns true for any element.

Any(func(key interface{}, value interface{}) bool) bool

All

Passes each element of the container to the given function and returns true if the function returns true for all elements.

All(func(key interface{}, value interface{}) bool) bool

Find

Passes each element of the container to the given function and returns the first (key,value) for which the function is true or nil,nil otherwise if no element matches the criteria.

Find(func(key interface{}, value interface{}) bool) (interface{}, interface{})

Example:

package main

import (
	"fmt"
	"github.com/emirpasic/gods/maps/treemap"
)

func printMap(txt string, m *treemap.Map) {
	fmt.Print(txt, " { ")
	m.Each(func(key interface{}, value interface{}) {
		fmt.Print(key, ":", value, " ")
	})
	fmt.Println("}")
}

func main() {
	m := treemap.NewWithStringComparator()
	m.Put("g", 7)
	m.Put("f", 6)
	m.Put("e", 5)
	m.Put("d", 4)
	m.Put("c", 3)
	m.Put("b", 2)
	m.Put("a", 1)
	printMap("Initial", m) // { a:1 b:2 c:3 d:4 e:5 f:6 g:7 }

	even := m.Select(func(key interface{}, value interface{}) bool {
		return value.(int) % 2 == 0
	})
	printMap("Elements with even values", even) // { b:2 d:4 f:6 }

	foundKey, foundValue := m.Find(func(key interface{}, value interface{}) bool {
		return value.(int) % 2 == 0 && value.(int) % 3 == 0
	})
	if foundKey != nil {
		fmt.Println("Element with value divisible by 2 and 3 found is", foundValue, "with key", foundKey) // value: 6, index: 4
	}

	square := m.Map(func(key interface{}, value interface{}) (interface{}, interface{}) {
		return key.(string) + key.(string), value.(int) * value.(int)
	})
	printMap("Elements' values squared and letters duplicated", square) // { aa:1 bb:4 cc:9 dd:16 ee:25 ff:36 gg:49 }

	bigger := m.Any(func(key interface{}, value interface{}) bool {
		return value.(int) > 5
	})
	fmt.Println("Map contains element whose value is bigger than 5 is", bigger) // true

	positive := m.All(func(key interface{}, value interface{}) bool {
		return value.(int) > 0
	})
	fmt.Println("All map's elements have positive values is", positive) // true

	evenNumbersSquared := m.Select(func(key interface{}, value interface{}) bool {
		return value.(int) % 2 == 0
	}).Map(func(key interface{}, value interface{}) (interface{}, interface{}) {
		return key, value.(int) * value.(int)
	})
	printMap("Chaining", evenNumbersSquared) // { b:4 d:16 f:36 }
}

Serialization

All data structures can be serialized (marshalled) and deserialized (unmarshalled). Currently, only JSON support is available.

JSONSerializer

Outputs the container into its JSON representation.

Typical usage for key-value structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/emirpasic/gods/maps/hashmap"
)

func main() {
	m := hashmap.New()
	m.Put("a", "1")
	m.Put("b", "2")
	m.Put("c", "3")

	bytes, err := json.Marshal(m) // Same as "m.ToJSON(m)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(string(bytes)) // {"a":"1","b":"2","c":"3"}
}

Typical usage for value-only structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/emirpasic/gods/lists/arraylist"
)

func main() {
	list := arraylist.New()
	list.Add("a", "b", "c")

	bytes, err := json.Marshal(list) // Same as "list.ToJSON(list)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(string(bytes)) // ["a","b","c"]
}

JSONDeserializer

Populates the container with elements from the input JSON representation.

Typical usage for key-value structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/emirpasic/gods/maps/hashmap"
)

func main() {
	hm := hashmap.New()

	bytes := []byte(`{"a":"1","b":"2"}`)
	err := json.Unmarshal(bytes, &hm) // Same as "hm.FromJSON(bytes)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(hm) // HashMap map[b:2 a:1]
}

Typical usage for value-only structures:

package main

import (
	"encoding/json"
	"fmt"
	"github.com/emirpasic/gods/lists/arraylist"
)

func main() {
	list := arraylist.New()

	bytes := []byte(`["a","b"]`)
	err := json.Unmarshal(bytes, &list) // Same as "list.FromJSON(bytes)"
	if err != nil {
		fmt.Println(err)
	}
	fmt.Println(list) // ArrayList ["a","b"]
}

Sort

Sort is a general purpose sort function.

Lists have an in-place Sort() function and all containers can return their sorted elements via containers.GetSortedValues() function.

Internally these all use the utils.Sort() method:

package main

import "github.com/emirpasic/gods/utils"

func main() {
	strings := []interface{}{}                  // []
	strings = append(strings, "d")              // ["d"]
	strings = append(strings, "a")              // ["d","a"]
	strings = append(strings, "b")              // ["d","a",b"
	strings = append(strings, "c")              // ["d","a",b","c"]
	utils.Sort(strings, utils.StringComparator) // ["a","b","c","d"]
}

Container

Container specific operations:

// Returns sorted container''s elements with respect to the passed comparator.
// Does not affect the ordering of elements within the container.
func GetSortedValues(container Container, comparator utils.Comparator) []interface{}

Usage:

package main

import (
	"github.com/emirpasic/gods/lists/arraylist"
	"github.com/emirpasic/gods/utils"
)

func main() {
	list := arraylist.New()
	list.Add(2, 1, 3)
	values := GetSortedValues(container, utils.StringComparator) // [1, 2, 3]
}

Appendix

Motivation

Collections and data structures found in other languages: Java Collections, C++ Standard Template Library (STL) containers, Qt Containers, Ruby Enumerable etc.

Goals

Fast algorithms:

  • Based on decades of knowledge and experiences of other libraries mentioned above.

Memory efficient algorithms:

  • Avoiding to consume memory by using optimal algorithms and data structures for the given set of problems, e.g. red-black tree in case of TreeMap to avoid keeping redundant sorted array of keys in memory.

Easy to use library:

  • Well-structured library with minimalistic set of atomic operations from which more complex operations can be crafted.

Stable library:

  • Only additions are permitted keeping the library backward compatible.

Solid documentation and examples:

  • Learning by example.

Production ready:

  • Used in production.

No dependencies:

  • No external imports.

There is often a tug of war between speed and memory when crafting algorithms. We choose to optimize for speed in most cases within reasonable limits on memory consumption.

Thread safety is not a concern of this project, this should be handled at a higher level.

Testing and Benchmarking

This takes a while, so test within sub-packages:

go test -run=NO_TEST -bench . -benchmem -benchtime 1s ./...

Contributing

Biggest contribution towards this library is to use it and give us feedback for further improvements and additions.

For direct contributions, pull request into master branch or ask to become a contributor.

Coding style:

# Install tooling and set path:
go install gotest.tools/gotestsum@latest
go install golang.org/x/lint/golint@latest
go install github.com/kisielk/errcheck@latest
export PATH=$PATH:$GOPATH/bin

# Fix errors and warnings:
go fmt ./... &&
go test -v ./... && 
golint -set_exit_status ./... && 
! go fmt ./... 2>&1 | read &&
go vet -v ./... &&
gocyclo -avg -over 15 ../gods &&
errcheck ./...

License

This library is distributed under the BSD-style license found in the LICENSE file.

Sponsors

BrowserStack

BrowserStack is a cloud-based cross-browser testing tool that enables developers to test their websites across various browsers on different operating systems and mobile devices, without requiring users to install virtual machines, devices or emulators.

gods's People

Contributors

aryanahadinia avatar bminer avatar buddhamagnet avatar dvrkps avatar emirpasic avatar eugecm avatar ferhatelmas avatar glenherb avatar haraldnordgren avatar jmdacruz avatar mahadevtw avatar mammatusplatypus avatar meal avatar mrvon avatar nagesh4193 avatar otnt avatar own2pwn avatar papacharlie avatar quasilyte avatar rakiyoshi avatar spewspews avatar spriithy avatar stevegt avatar thebenkogan avatar ugurcsen avatar vladaionescu avatar whilei avatar xtutu avatar yvvlee avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

gods's Issues

What do you think about Enumerator?

What do you think about Enumerator?
In offical library, there is "container/list", it contains Element, that can take values one by one.
I think it takes less complex then every time find it.

Add Circular Buffer and Priority Queue

Would be nice to have a circular buffer where adding elements to the front and back take O(1). I see that there are no Queues or Deques and the circular buffer is perfect for both data structures. There can also be linked list queues or deques. Also an array based binary Heap? They are pretty easy to implement. These are just some ideas though.

Treeset iterator is broken

How to reproduce:

import "github.com/emirpasic/gods/sets/treeset"

var tree  *treeset.Set
tree = treeset.NewWith(someComparator)
for _, v := range someItems {
    tree.Add(v)
}
items := tree.Iterator()
for items.Next() {
    // infinite loop!
}

features new Data Structures

Could you please add 2-4 tree
and then queap.

Happy to contribute as my best, so far my obstacle is the
fact that I was not able to file a complete implementation of any
of the two in any language or pseudolanguage

Tk in advance,
LP

unhashable type []interface

type HashSet struct {
set *hashset.Set
}

func NewHashSet() *HashSet {
var result HashSet
result.set = hashset.New()
return &result
}

// If call Add("abc"), it will crash and output "unhashable type []interface", why?
func (s *HashSet) Add(items ...interface{}) {
s.set.Add(items)
}

Thank you.

Iterator support seek ?

Any follow up plan to add "seek" function for treemap ?
like:

	it := m.Iterator()
	prefix :="1234"
        it.Seek(prefix)
	for it.Next() {
		...
	}

Question about arraylist

Hi.

I have a question about arraylist. Here.

In go, the slice is already a dynamic array. Is it more appropriate to change it to an array?

Int pairs

Hi,

I use pairs of ints which are id's for my data. These are 'maps' - relations between two data. What data structure do you suggest I use? Treemap.Map would seem slow for lookup because I can only Get by Key and I'd like to Get by Key or Value.

If I use 2 lists or 2 sets the int pairs will not align.

Should I just use a 2 dimensional int slice? [][]int{}

Thanks.

B tree

An absolute must-have.

Basic b-tree in-memory implementation.

B+ tree will be skipped, since there isn't much difference except that it holds only the indexes in the tree, but the elements in an external structure. B* tree could be a future extension to this, if packing becomes important.

In future we should see how to serialize/deserialize B tree, since the use case of B tree is generally IO related: database indexing, files, etc. Having a method to load/save to disk or simply serialize/deserialize to bytes would make this useful, i.e. Serializable interface

Bulk Initialization

It'd be nice to have a bulk initialization convenience method for the container interface. Example use case is creating a hash or set of a heavily used static data set, like country information.

Test coverage

For algorithms I expect test coverage to be about 100%. However for example for red black tree current test coverage is 84.2%. Looking at more detailed output you can see some algorithm branches are untested. This is a huge factor when you choose a library on GitHub.

go test -coverprofile=coverage.out
go tool cover -html=coverage.out

Add a GetIterator method to treeMap etc

I think sometimes we use treemap to search continusly data, e.g.:
"search 20 items large than 50",
I think some code like below can solve it:

// Get and return iterator
func (m *Map) GetIterator(key interface{}) (iter Iterator, found bool) {
	_iter, err := m.tree.GetIterator(key)
	return Iterator{_iter}, err
}

// Get and return iterator
func (tree *Tree) GetIterator(key interface{}) (iter Iterator, found bool) {
	node := tree.lookup(key)
	if node != nil {
		return Iterator{
			tree,
			node,
			between,
		}, true
	}
	return
}

JSON Serialization with Integer-keyed Maps

The following example doesn't seem to work:

tm1 := treemap.NewWithIntComparator()
tm1.Put(1, "x")
tm1.Put(2, "b")
tm1.Put(1, "a")

data, _ := tm1.ToJSON()

tm2 := treemap.NewWithIntComparator()
tm2.FromJSON(data) // fails

The serialized JSON has the integer keys in quotes - {"1":"a","2":"b"} which is, of course, the only possibility conforming to JSON spec. However, this is counter-intuitive. Would it not be better to store an array of key/value pairs?

DoublyLinkedList.Insert() forgets dealing with element.prev

In order to construct a "doubly" linked list while inserting, new element and old element's prev pointer have to get updated.
Solution:
In doublylinkedlist.go,

  • Line 262, add:
  • newElement.prev = beforeElement
    
  • Line 266, add:
  • oldNextElement.prev = beforeElement
    
  • Line 271, add:
  • newElement.prev = beforeElement
    
  • Line 274, add:
  • oldNextElement.prev = beforeElement
    

Enumerable chaining

I noticed you have Map and Select method commented out in EnumerableWithIndex and EnumerableWithKey interfaces since returning a container will require type assertion at every step, pretty ugly for chaining.

I would suggest returning EnumerableWithIndex (or EnumerableWithKey) for those methods and add a ToContainer method at the end.

This would allow API calls like:

f1 := func(index int, value interface{}) interface{} { // some mapping }
f2 := func(index int, value interface{}) interface{} { // some other mapping }
f3 := func(index int, value interface{}) bool { // some filtering }

list.Map(f1).Map(f2).Select(f3).toContainer()

At the end, the user is free to do any type assertion as they want.

Puzzle about the iterative sequence

A pleasure that LinkedHashMap has been added.

While I have a different point about the iterative sequence. The sequence should order by the key last time put in instead of the first time put in.

This situation is caused by the func named LinkedHashMap.Put:

// Put inserts key-value pair into the map.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (m *Map) Put(key interface{}, value interface{}) {
	if _, contains := m.table[key]; !contains {
		m.ordering.Append(key)
	}
	m.table[key] = value
}

Test case as follows:

func main() {
	lhm := linkedhashmap.New()
	lhm.Put("a", 1)
	lhm.Put("b", 2)
	lhm.Put("c", 3)
	lhm.Put("a", 4)
	lhm.Each(func(k, v interface{}) { fmt.Println(k, v) })
}

I except the output like

b 2
c 3
a 4

, but the result is

a 4
b 2
c 3

.

Method for adding sorted sequence in tree like data structures

Functions like putAll(Map) in java or insertion_hint concept in c++ gives possibility to add some range of sorted values to map in more efficient way. Maybe I didn't notice something, but currently similar optimization cannot be achieved with existing interface.

HashMap Cannot level serialization

HashMap serialization is not hierarchically serialized for the multiplicity of value values,
for example:
[
"a": [
"b": [:]
],
"v": ["e": 23]
]
At the same time, deserialization also has the same problem

Can I set iterator index?

var list *arraylist.List
list = {0,1,2,3,4,5}
it := list.Iterator()
it.SetIndex(3);
it.Next(); // 4

add Copy to (Array)List

I could really use the function Copy on ArrayList, but it would probably also make sense to add it to the other lists.
I can see that the function Values (on ArrayList) returns an copy of the internal array, but I would like to keep interface ArrayList

Iterator methods panic after copy

Copying a treeset.Iterator will result in panics when treeset.Iterator.Value() is called. I suspect the same holds for all Iterate() methods.

Because Iterator is stateful, I suggest returning an *Iterator from all Iterate() methods.

Treeset background triggering

I have a small question concerning treesets. I'm applying it on bigger string-sets. Kind of like ORDER BY in SQL languages for my result-sets. I ran some Benchmarks with 5000 .Add(SomeStruct{123, "Name"}) per run, but I was wondering; how does the object do this logic in the background? Does every .Add() constantly trigger the sorting to happen or only if I read from the object? The performance degrades very fast with strings and I already have an older mechanic running in my API to do this kind of like this:

nameAsc := func(p1, p2 *SorterObject) bool {
    return p1.Value < p2.Value
}
nameDesc := func(p1, p2 *SorterObject) bool {
    return p1.Value > p2.Value
}

By(nameAsc).Sort(users)

This code-structure also suffers from exponential degradation.

I kind of wanted to see if the most optimal form of using treesets would be faster than the native Go solution I currently have running.

Any other tips (maybe another object would be better at this even) would be very much appreciated too! The idea of what I'm trying to achieve is that the Key keeps actively moving with the way the Name (string-value) is sorted.

Benchmarks for 10k and 100k .Add() per cycle:

1000  1920877 ns/op
100   19820013 ns/op

Add `set(index, value)` to List interface

In many (most?) List implementations, a method to set a given value is often exposed.

For example, with Go slices we can do:

x := make([]int, 4)
x[2] = 7 // This method is missing for ArrayList et. al.

Thoughts on this? I would be willing to do a PR.

Iterator Reset

Dose your iterator can reset?
I mean reset from 0 position.
And start another 1\2\3\4...

Tree can't serialize []byte as keys

I have a large dataset of 32byte hashes that I need to search. Loading and searching worked but when I try to serialize the tree to JSON it can't be reloaded because the keys get turned into "[1 2 3 4 5]", I guess it uses fmt.Sprintf("%v", s). The right thing to do would be to marshal to base64.

This is bad. Why is there a custom json marshaller and also: why not just implement https://godoc.org/encoding#BinaryMarshaler? Then you get all kinds of marshals for free as well.

Implement json.Marshaller interface

Not sure if this is possible, but it would be nice if there were a way to implement a default json marshaling implementation so that the collection data can be exported as json.

First element of treebidimap

I'm trying to use treebidimap and detect this strange behavior:

Procedure :

  • Create new map :
    t := treebidimap.NewWith(utils.IntComparator, utils.StringComparator)
  • Add first element :
    t.Put(1,1)
  • Add second element :
    t.Put(1,1)

Expected:

  • The panic happens when adding first element

Actual:

  • The panic only happens when adding second element

Tried to check [redblacktree.go] and got the following :

// Put inserts node into the tree.
// Key should adhere to the comparator's type assertion, otherwise method panics.
func (tree *Tree) Put(key interface{}, value interface{}) {
	var insertedNode *Node
	if tree.Root == nil {
		tree.Root = &Node{Key: key, Value: value, color: red}
		insertedNode = tree.Root
	} else {
		node := tree.Root
		loop := true
		for loop {
			compare := tree.Comparator(key, node.Key)

There seems the Comparator is not used for first node/element, it is inserted directly to the map.
Is this case as your expected? Did I miss any information in README?

Replace Timsort

A lot has changed in the last years. Go's sort and overall language implementation has improved. So I've decided to rerun a few tests and do research in order to decide if the included Timsort's implementation is worth the maintenance and additional memory allocation in GoDS:

github.com/psilva261/timsort/# go test -test.bench=.*

(Go 1.6, Intel(R) Core(TM) i5-4690K CPU @ 3.50GHz)

image

Speed, as per given datasets, is still in favor of Timsort, albeit these xor-datasets are biased towards Timsort's adaptivness from minrun, exactly the purpose for which Timsort was crafted with assumption that real-world datasets show similar patterns. Xor-dataset generation : 0xff & (i ^ 0xab), starting xor-dataset sequence:

171, 170, 169, 168, 175, 174, 173, 172, 163, 162, 161, 160, 167, 166, 165, 164, 187, 186, 185, 184, 191, 190, 189, 188, 179, 178, 177, 176, 183, 182, 181, 180, 139, 138, 137, 136, 143, 142, 141, 140, 131, 130, 129, 128, 135, 134, 133, 132, 155, 154, 153, 152, 159, 158, 157, 156, 147, 146, 145, 144, 151, 150, 149, 148, 235, 234, 233, 232, 239, 238, 237, 236, 227, 226, 225, 224, 231, 230, 229, 228, 251, 250, 249, 248, 255, 254, 253, 252, 243, 242, 241, 240, 247, 246, 245, 244, 203, 202, 201, 200, 207, 206, 205, 204, 195, 194, 193, 192, 199, 198, 197, 196, 219, 218, 217, 216, 223, 222, 221, 220, 211, 210, 209, 208, 215, 214, 213, 212, 43, 42, 41, 40, 47, 46, 45, 44, 35, 34, 33, 32, 39, 38, 37, 36, 59, 58, 57, 56, 63, 62, 61, 60, 51, 50, 49, 48, 55, 54, 53, 52, 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, 1, 0, 7, 6, 5, 4, 27, 26, 25, 24, 31, 30, 29, 28, 19, 18, 17, 16, 23, 22, 21, 20, 107, 106, 105, 104, 111, 110, 109, 108, 99, 98, 97, 96, 103, 102, 101, 100, 123, 122, 121, 120, 127, 126, 125, 124, 115, 114, 113, 112, 119, 118, 117, 116, 75, 74, 73, 72, 79, 78, 77, 76, 67, 66, 65, 64, 71, 70, 69, 68, 91, 90, 89, 88, 95, 94, 93, 92, 83, 82, 81, 80, 87, 86, 85, 84, 171, 170, 169, 168, 175, 174, 173, 172, 163, 162, 161, 160, 167, 166, 165, 164, 187, 186, 185, 184, 191, 190, 189, 188, 179, 178, 177,176, 183, 182, 181, 180, 139, 138, 137, 136, 143, 142, 141, 140, 131, 130, 129, 128, 135, 134, 133, 132, 155, 154, 153, ...

However, filtering out only random datasets, Go's sort expectedly has better performance, because Timsort's attempt to adapt to a random dataset only harms it. Go's simple two phase approach (quicksort first for large, then insertion sort for small datasets) performs better.

image

Modifying the test parameters to show memory allocation : go test -bench . -benchmem -benchtime 1s (allocated & allocation):

BenchmarkTimsortXor100-4              1120 B/op          4 allocs/op
BenchmarkTimsortInterXor100-4         1568 B/op          6 allocs/op
BenchmarkStandardSortXor100-4            0 B/op          0 allocs/op
BenchmarkTimsortSorted100-4           1120 B/op          4 allocs/op
BenchmarkTimsortInterSorted100-4      1568 B/op          6 allocs/op
BenchmarkStandardSortSorted100-4         0 B/op          0 allocs/op
BenchmarkTimsortRevSorted100-4        1120 B/op          4 allocs/op
BenchmarkTimsortInterRevSorted100-4   1568 B/op          6 allocs/op
BenchmarkStandardSortRevSorted100-4      0 B/op          0 allocs/op
BenchmarkTimsortRandom100-4           1120 B/op          4 allocs/op
BenchmarkTimsortInterRandom100-4      1568 B/op          6 allocs/op
BenchmarkStandardSortRandom100-4         0 B/op          0 allocs/op
BenchmarkTimsortXor1K-4              12576 B/op          5 allocs/op
BenchmarkTimsortInterXor1K-4         14656 B/op          7 allocs/op
BenchmarkStandardSortXor1K-4             0 B/op          0 allocs/op
BenchmarkTimsortSorted1K-4            4384 B/op          4 allocs/op
BenchmarkTimsortInterSorted1K-4      10560 B/op          6 allocs/op
BenchmarkStandardSortSorted1K-4          0 B/op          0 allocs/op
...

The dataset item in question (int is 64-bit on my machine):

type record struct {
    key, order int
}

Go's sort as per documentation in source code does not make any memory allocations. This favors Go's sort.

Conclusion:

  • Timsort has better performance for dataset resembling (questionable?) real-world data with intrinsic patterns.
  • Go's sort is memory friendlier.
  • Timsort is stable unlike Go's sort, albeit Go's sort provides also a stable sort not tested here.
  • Using Go's sort in this project would mean less maintenance.
  • Using Go's sort would offload any optimizations to the algorithm to the Go's authors in future.

Even after this "quick" analysis, I am not sure if a switch to Go's sort is a good or bad idea or something in-between (most-probably). There is nothing like an average dataset and the choice depends on the nature of the dataset. When using GoDS in writing and solving complex systems, sorting is least likely to be the bottleneck, so analyzing this further is irrelevant and topic to academic discussions.

Timsort might be replaced in GoDS by Go's native sorting simply for keeping the code base of this library as small as possible and arguments given above.

References:

Question regarding tests

Hi. I've a few questions about tests in binaryheap_test.go by example.

  1. Why you disable timer at the beginning of the test and then enable it at the end?
  2. You're pushing 100 elements, but then popping 100 * b.N, so pop function returns nothing. Am I missing something or this is a bug?

Thank you.

Get subtree sizes in AVL tree

It would be a convenient feature for the AVL tree (or possibly the other tree implementations too) if we could have a method on each node that returns the size of the subtree rooted at that node.

Is there a map comparator that simply retains the order of insertion?

I am using code that collects KV pairs in a map[string]interface{}. Because it's Go, when json.Unmarshal() iterates over the keys, they come out in a random order. This does not work for my purposes; I need the keys to iterate in the same order in which they were inserted.

Your TreeMap maintains an ordered set of keys, based on a comparator. Does a comparator exist, or can one be built, that sorts the keys based on the order of their insertion? And if so, would the JSON interface then serialize these keys in the insertion order?

Thank you.

Access value in key comparator

I want to implement a structure base on TreeMap where I have IP addresses as the key and a TreeSet as the value. I want to be able to sort the TreeMap using the size() of the TreeSet. This is currently impossible because the comparator can only access either the keys or values.

For example:

m := treemap.NewWith(myComparator)

s1 := treeset.NewWithIntComparator()
s1.Add(2, 2, 3, 4, 5) 

s2 := treeset.NewWithIntComparator()
s2.Add(7, 8, 9) 

m.Put("server1", s1)
m.Put("server2", s2)

Unfortunately, the myComparator can only access the keys:

func myComparator(a, b interface{}) int {
    // a and b are the keys
}

What do you think about adding access to the values for key comparators used by maps?

Is Bug? BinaryHeap

type User struct {
	Priority int
	Args     []interface{}
	Method   func(args ...interface{}) bool
}

// Custom comparator (sort by IDs)
func byID(a, b interface{}) int {

	// Type assertion, program will panic if this is not respected
	c1 := a.(User)
	c2 := b.(User)

	switch {
	case c1.Priority > c2.Priority:
		return 1
	case c1.Priority < c2.Priority:
		return -1
	default:
		return 0
	}
}

func TestMain(t *testing.T) {
	set := binaryheap.NewWith(byID)

	set.Push(User{1, []interface{}{1.0, 2.0}, Equal})
	set.Push(User{3, []interface{}{1.0, 2.0}, Equal})
	set.Push(User{2, []interface{}{1.0, 2.0}, Equal})
	set.Push(User{2, []interface{}{3.0, 2.0}, Equal})
	set.Push(User{2, []interface{}{3.0, 2.0}, Equal})

	t.Error(set.Values()) //  [{1 [1 2] 0x51fd40} {2 [3 2] 0x51fd40} {2 [1 2] 0x51fd40} {3 [1 2] 0x51fd40} {2 [3 2] 0x51fd40}]
}

Priority list = 1 2 2 3 2 // ? 1 2 2 2 3?

Add Skip Lists

I think it would be useful to have skip lists included in the GoDS collection.

I previously studied the publicly available Go skip list implementations and found some issues with each. I then created a very fast, threadsafe skip list of my own (under MIT license). I believe it is one of the best foundations to work from for this data structure and can easily be integrated into GoDS.

If you like, I can work on a pull request to include my skip list implementation with the appropriate interface. First, I wanted to make sure this would be useful and to ask what specific details I should watch for / include to ensure smooth compatibility.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.