Giter Club home page Giter Club logo

beta-cdf's Introduction

Cumulative Distribution Function

NPM version Build Status Coverage Status Dependencies

Beta distribution cumulative distribution function.

The cumulative distribution function for a Beta random variable is

Cumulative distribution function for a Beta distribution.

where alpha is the first shape parameter and beta is the second shape parameter.

Installation

$ npm install distributions-beta-cdf

For use in the browser, use browserify.

Usage

var cdf = require( 'distributions-beta-cdf' );

cdf( x[, options] )

Evaluates the cumulative distribution function for the Beta distribution. x may be either a number, an array, a typed array, or a matrix.

var matrix = require( 'dstructs-matrix' ),
	mat,
	out,
	x,
	i;

out = cdf( 0.5 );
// returns 0.5

x = [ 0.2, 0.4, 0.6, 0.8 ];
out = cdf( x, {
	'alpha': 2,
	'beta': 2
});
// returns [ ~0.104, ~0.352, ~0.648, ~0.896 ]

x = new Float32Array( x );
out = cdf( x, {
	'alpha': 2,
	'beta': 2
});
// returns Float64Array( [~0.104,~0.352,~0.648,~0.896] )

x = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
	x[ i ] = i / 6;
}
mat = matrix( x, [3,2], 'float32' );
/*
	[  0  1/6
	  2/6 3/6
	  4/6 5/6 ]
*/

out = cdf( mat, {
	'alpha': 2,
	'beta': 2
});
/*
	[  0     ~0.0741
	  ~0.259 ~0.5
	  ~0.741 ~0.926  ]
*/

The function accepts the following options:

  • alpha: first shape parameter. Default: 1.
  • beta: second shape parameter. Default: 1.
  • accessor: accessor function for accessing array values.
  • dtype: output typed array or matrix data type. Default: float64.
  • copy: boolean indicating if the function should return a new data structure. Default: true.
  • path: deepget/deepset key path.
  • sep: deepget/deepset key path separator. Default: '.'.

A Beta distribution is a function of 2 parameter(s): alpha(first shape parameter) and beta(second shape parameter). By default, alpha is equal to 1 and beta is equal to 1. To adjust either parameter, set the corresponding option(s).

var x = [ 0.2, 0.4, 0.6, 0.8 ];

var out = cdf( x, {
	'alpha': 10,
	'beta': 5
});
// returns [ ~0, ~0.0175, ~0.279, ~0.87 ]

For non-numeric arrays, provide an accessor function for accessing array values.

var data = [
	[0,0.2],
	[1,0.4],
	[2,0.6],
	[3,0.8]
];

function getValue( d, i ) {
	return d[ 1 ];
}

var out = cdf( data, {
	'alpha': 2,
	'beta': 2,
	'accessor': getValue
});
// returns [ ~0.104, ~0.352, ~0.648, ~0.896 ]

To deepset an object array, provide a key path and, optionally, a key path separator.

var data = [
	{'x':[0,0.2]},
	{'x':[1,0.4]},
	{'x':[2,0.6]},
	{'x':[3,0.8]}
];

var out = cdf( data, {
	'alpha': 2,
	'beta': 2,
	'path': 'x/1',
	'sep': '/'
});
/*
	[
		{'x':[0,~0.104]},
		{'x':[1,~0.352]},
		{'x':[2,~0.648]},
		{'x':[3,~0.896]},
	]
*/

var bool = ( data === out );
// returns true

By default, when provided a typed array or matrix, the output data structure is float64 in order to preserve precision. To specify a different data type, set the dtype option (see matrix for a list of acceptable data types).

var x, out;

x = new Float64Array( [0.2,0.4,0.6,0.8] );

out = cdf( x, {
	'alpha': 2,
	'beta': 2,
	'dtype': 'float32'
});
// returns Float32Array( [~0.104,~0.352,~0.648,~0.896] )

// Works for plain arrays, as well...
out = cdf( [0.2,0.4,0.6,0.8], {
	'alpha': 2,
	'beta': 2,
	'dtype': 'float32'
});
// returns Float32Array( [~0.104,~0.352,~0.648,~0.896] )

By default, the function returns a new data structure. To mutate the input data structure (e.g., when input values can be discarded or when optimizing memory usage), set the copy option to false.

var bool,
	mat,
	out,
	x,
	i;

x = [ 0.2, 0.4, 0.6, 0.8 ];

out = cdf( x, {
	'alpha': 2,
	'beta': 2,
	'copy': false
});
// returns [ ~0.104, ~0.352, ~0.648, ~0.896 ]

bool = ( x === out );
// returns true

x = new Float32Array( 6 );
for ( i = 0; i < 6; i++ ) {
	x[ i ] = i / 6;
}
mat = matrix( x, [3,2], 'float32' );
/*
	[  0  1/6
	  2/6 3/6
	  4/6 5/6 ]
*/

out = cdf( mat, {
	'alpha': 2,
	'beta': 2,
	'copy': false
});
/*
	[  0     ~0.0741
	  ~0.259 ~0.5
	  ~0.741 ~0.926  ]
*/

bool = ( mat === out );
// returns true

Notes

  • If an element is not a numeric value, the evaluated cumulative distribution function is NaN.

    var data, out;
    
    out = cdf( null );
    // returns NaN
    
    out = cdf( true );
    // returns NaN
    
    out = cdf( {'a':'b'} );
    // returns NaN
    
    out = cdf( [ true, null, [] ] );
    // returns [ NaN, NaN, NaN ]
    
    function getValue( d, i ) {
    	return d.x;
    }
    data = [
    	{'x':true},
    	{'x':[]},
    	{'x':{}},
    	{'x':null}
    ];
    
    out = cdf( data, {
    	'accessor': getValue
    });
    // returns [ NaN, NaN, NaN, NaN ]
    
    out = cdf( data, {
    	'path': 'x'
    });
    /*
    	[
    		{'x':NaN},
    		{'x':NaN},
    		{'x':NaN,
    		{'x':NaN}
    	]
    */

Examples

var cdf = require( 'distributions-beta-cdf' ),
	matrix = require( 'dstructs-matrix' );

var data,
	mat,
	out,
	tmp,
	i;

// Plain arrays...
data = new Array( 10 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = i - 5;
}
out = cdf( data );

// Object arrays (accessors)...
function getValue( d ) {
	return d.x;
}
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = {
		'x': data[ i ]
	};
}
out = cdf( data, {
	'accessor': getValue
});

// Deep set arrays...
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = {
		'x': [ i, data[ i ].x ]
	};
}
out = cdf( data, {
	'path': 'x/1',
	'sep': '/'
});

// Typed arrays...
data = new Float32Array( 10 );
for ( i = 0; i < data.length; i++ ) {
	data[ i ] = i - 5;
}
out = cdf( data );

// Matrices...
mat = matrix( data, [5,2], 'float32' );
out = cdf( mat );

// Matrices (custom output data type)...
out = cdf( mat, {
	'dtype': 'uint8'
});

To run the example code from the top-level application directory,

$ node ./examples/index.js

Tests

Unit

Unit tests use the Mocha test framework with Chai assertions. To run the tests, execute the following command in the top-level application directory:

$ make test

All new feature development should have corresponding unit tests to validate correct functionality.

Test Coverage

This repository uses Istanbul as its code coverage tool. To generate a test coverage report, execute the following command in the top-level application directory:

$ make test-cov

Istanbul creates a ./reports/coverage directory. To access an HTML version of the report,

$ make view-cov

License

MIT license.

Copyright

Copyright © 2015. The Compute.io Authors.

beta-cdf's People

Contributors

planeshifter avatar

Stargazers

 avatar  avatar

Watchers

 avatar  avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.