Giter Club home page Giter Club logo

convolutional-denoising-autoencoder's Introduction

Exp.No : 07

Date : 22.04.2024


Convolutional Autoencoder for Image Denoising

AIM:

To develop a convolutional autoencoder for image denoising application.

Problem Statement and Dataset:

  • Autoencoder is an unsupervised artificial neural network that is trained to copy its input to output.
  • An autoencoder will first encode the image into a lower-dimensional representation, then decodes the representation back to the image.
  • The goal of an autoencoder is to get an output that is identical to the input. Autoencoders uses MaxPooling, convolutional and upsampling layers to denoise the image.
  • We are using MNIST Dataset for this experiment.
  • The MNIST dataset is a collection of handwritten digits.
  • The task is to classify a given image of a handwritten digit into one of 10 classes representing integer values from 0 to 9, inclusively.
  • The dataset has a collection of 60,000 handwrittend digits of size 28 X 28.
  • Here we build a convolutional neural network model that is able to classify to it's appropriate numerical value.

image

Convolution Autoencoder Network Model:

image

DESIGN STEPS

  • Step 1: Import the necessary libraries and dataset.
  • Step 2: Load the dataset and scale the values for easier computation.
  • Step 3: Add noise to the images randomly for both the train and test sets.
  • Step 4: Build the Neural Model using
    • Convolutional Layer
    • Pooling Layer
    • Up Sampling Layer.
    • Make sure the input shape and output shape of the model are identical.
  • Step 5: Pass test data for validating manually.
  • Step 6: Plot the predictions for visualization.

PROGRAM

Note

Developed By : DINESH KUMAR R (212222110010)

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

from tensorflow import keras
from tensorflow.keras import layers, utils, models
from tensorflow.keras.datasets import mnist
(x_train, _), (x_test, _) = mnist.load_data()
x_train.shape
x_train_scaled = x_train.astype('float32') / 255.
x_test_scaled = x_test.astype('float32') / 255.
x_train_scaled = np.reshape(x_train_scaled, (len(x_train_scaled), 28, 28, 1))
x_test_scaled = np.reshape(x_test_scaled, (len(x_test_scaled), 28, 28, 1))
noise_factor = 0.5
x_train_noisy = x_train_scaled + noise_factor*np.random.normal(loc=0.0, scale=1.0,
                                                               size=x_train_scaled.shape)
x_test_noisy = x_test_scaled + noise_factor*np.random.normal(loc=0.0, scale=1.0,
                                                             size=x_test_scaled.shape)
x_train_noisy = np.clip(x_train_noisy, 0., 1.)
x_test_noisy = np.clip(x_test_noisy, 0., 1.)
print('Developed by: DINESH KUMAR R')
n = 10
plt.figure(figsize=(20, 2))
for i in range(1, n + 1):
    ax = plt.subplot(1, n, i)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

Noicy Image

Screenshot 2024-05-06 204236

input_img = keras.Input(shape=(28, 28, 1))
x=layers.Conv2D(16,(5,5),activation='relu',padding='same')(input_img)
x=layers.MaxPooling2D((2,2),padding='same')(x)
x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(x)
x=layers.MaxPooling2D((2,2),padding='same')(x)
x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(x)
x=layers.MaxPooling2D((2,2),padding='same')(x)
x=layers.Conv2D(8,(7,7),activation='relu',padding='same')(x)
encoded = layers.MaxPooling2D((2, 2), padding='same')(x)

x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(encoded)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(4,(3,3),activation='relu',padding='same')(x)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(8,(5,5),activation='relu',padding='same')(x)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(16,(5,5),activation='relu',padding='same')(x)
x=layers.UpSampling2D((2,2))(x)
x=layers.Conv2D(16,(5,5),activation='relu')(x)
x=layers.UpSampling2D((1,1))(x)
decoded = layers.Conv2D(1, (3, 3), activation='sigmoid', padding='same')(x)

autoencoder = keras.Model(input_img, decoded)
autoencoder.summary()

Model Summary

image

autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

autoencoder.fit(x_train_noisy, x_train_scaled,
                epochs=3,
                batch_size=256,
                shuffle=True,
                validation_data=(x_test_noisy, x_test_scaled))
print('Developed By DINESH KUMAR R')
metrics = pd.DataFrame(autoencoder.history.history)
metrics[['loss','val_loss']].plot()
decoded_imgs = autoencoder.predict(x_test_noisy)
n = 10
print("Developed by DINESH KUMAR R (212222110010)")
plt.figure(figsize=(20, 4))
for i in range(1, n + 1):
    # Display original
    ax = plt.subplot(3, n, i)
    plt.imshow(x_test_scaled[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)

    # Display noisy
    ax = plt.subplot(3, n, i+n)
    plt.imshow(x_test_noisy[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)    

    # Display reconstruction
    ax = plt.subplot(3, n, i + 2*n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    plt.gray()
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()

OUTPUT

Training Loss, Validation Loss Vs Iteration Plot

Screenshot 2024-05-06 204251

Original vs Noisy Vs Reconstructed Image

Screenshot 2024-05-06 204305

RESULT

Thus we have successfully developed a convolutional autoencoder for image denoising application.

convolutional-denoising-autoencoder's People

Contributors

obedotto avatar dinesh18032004 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.