Giter Club home page Giter Club logo

maplib's Introduction

maplib: High-performance RDF knowledge graph construction, SHACL validation and SPARQL-based enrichment in Python

maplib is a knowledge graph construction library for building RDF knowledge graphs using template expansion (OTTR Templates). Maplib features SPARQL- and SHACL-engines that are available as the graph is being constructed, allowing enrichment and validation. It can construct and validate knowledge graphs with millions of nodes in seconds.

maplib allows you to leverage your existing skills with Pandas or Polars to extract and wrangle data from existing databases and spreadsheets, before applying simple templates to them to build a knowledge graph.

Template expansion is typically zero-copy and nearly instantaneous, and the built-in SPARQL and SHACL engines means you can query, inspect, enrich and validate the knowledge graph immediately.

maplib is written in Rust, it is built on Apache Arrow using Pola.rs and uses libraries from Oxigraph for handling linked data as well as parsing SPARQL queries.

Installing

The package is published on PyPi and the API documented here:

pip install maplib

Please send us a message, e.g. on LinkedIn (search for Data Treehouse) or on our webpage if you want to try out SHACL.

Mapping

We can easily map DataFrames to RDF-graphs using the Python library. Below is a reproduction of the example in the paper [1]. Assume that we have a DataFrame given by:

import polars as pl
pl.Config.set_fmt_str_lengths(150)

pi = "https://github.com/DataTreehouse/maplib/pizza#"
df = pl.DataFrame({
    "p":[pi + "Hawaiian", pi + "Grandiosa"],
    "c":[pi + "CAN", pi + "NOR"],
    "ings": [[pi + "Pineapple", pi + "Ham"],
             [pi + "Pepper", pi + "Meat"]]
})
print(df)

That is, our DataFrame is:

p c ings
str str list[str]
"https://.../pizza#Hawaiian" "https://.../maplib/pizza#CAN" [".../pizza#Pineapple", ".../pizza#Ham"]
"https://.../pizza#Grandiosa" "https://.../maplib/pizza#NOR" [".../pizza#Pepper", ".../pizza#Meat"]

Then we can define a OTTR template, and create our knowledge graph by expanding this template with our DataFrame as input:

from maplib import Mapping, Prefix, Template, Argument, Parameter, Variable, RDFType, triple, a
pi = Prefix("pi", pi)

p_var = Variable("p")
c_var = Variable("c")
ings_var = Variable("ings")

template = Template(
    iri= pi.suf("PizzaTemplate"),
    parameters= [
        Parameter(variable=p_var, rdf_type=RDFType.IRI()),
        Parameter(variable=c_var, rdf_type=RDFType.IRI()),
        Parameter(variable=ings_var, rdf_type=RDFType.Nested(RDFType.IRI()))
    ],
    instances= [
        triple(p_var, a(), pi.suf("Pizza")),
        triple(p_var, pi.suf("fromCountry"), c_var),
        triple(
            p_var, 
            pi.suf("hasIngredient"), 
            Argument(term=ings_var, list_expand=True), 
            list_expander="cross")
    ]
)

m = Mapping()
m.expand(template, df)
hpizzas = """
    PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
    CONSTRUCT { ?p a pi:HeterodoxPizza } 
    WHERE {
        ?p a pi:Pizza .
        ?p pi:hasIngredient pi:Pineapple .
    }"""
m.insert(hpizzas)
return m

We can immediately query the mapped knowledge graph:

m.query("""
PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
SELECT ?p ?i WHERE {
?p a pi:Pizza .
?p pi:hasIngredient ?i .
}
""")

The query gives the following result (a DataFrame):

p i
str str
"https://.../pizza#Grandiosa" "https://.../pizza#Meat"
"https://.../pizza#Grandiosa" "https://.../pizza#Pepper"
"https://.../pizza#Hawaiian" "https://.../pizza#Pineapple"
"https://.../pizza#Hawaiian" "https://.../pizza#Ham"

Next, we are able to perform a construct query, which creates new triples but does not insert them.

hpizzas = """
PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>
CONSTRUCT { ?p a pi:UnorthodoxPizza } 
WHERE {
    ?p a pi:Pizza .
    ?p pi:hasIngredient pi:Pineapple .
}"""
res = m.query(hpizzas)
res[0]

The resulting triples are given below:

subject verb object
str str str
"https://.../pizza#Hawaiian" "http://.../22-rdf-syntax-ns#type" "https://.../pizza#UnorthodoxPizza"

If we are happy with the output of this construct-query, we can insert it in the mapping state. Afterwards we check that the triple is added with a query.

m.insert(hpizzas)
m.query("""
PREFIX pi:<https://github.com/DataTreehouse/maplib/pizza#>

SELECT ?p WHERE {
?p a pi:UnorthodoxPizza
}
""")

Indeed, we have added the triple:

p
str
"https://github.com/DataTreehouse/maplib/pizza#Hawaiian"

API

The API is simple, and contains only one class and a few methods for:

  • expanding templates
  • querying with SPARQL
  • validating SHACL
  • importing triples (Turtle, RDF/XML, NTriples)
  • writing triples (NTriples)
  • creating a new Mapping object (sprout) based on queries over the current Mapping object.

The API is documented HERE

References

There is an associated paper [1] with associated benchmarks showing superior performance and scalability that can be found here. OTTR is described in [2].

[1] M. Bakken, "maplib: Interactive, literal RDF model mapping for industry," in IEEE Access, doi: 10.1109/ACCESS.2023.3269093.

[2] M. G. Skjæveland, D. P. Lupp, L. H. Karlsen, and J. W. Klüwer, “Ottr: Formal templates for pattern-based ontology engineering.” in WOP (Book), 2021, pp. 349–377.

Licensing

All code produced since August 1st. 2023 is copyrighted to Data Treehouse AS with an Apache 2.0 license unless otherwise noted.

All code which was produced before August 1st. 2023 copyrighted to Prediktor AS with an Apache 2.0 license unless otherwise noted, and has been financed by The Research Council of Norway (grant no. 316656) and Prediktor AS as part of a PhD Degree. The code at this state is archived in the repository at https://github.com/magbak/maplib.

maplib's People

Contributors

magbak avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.