Giter Club home page Giter Club logo

kalman's Introduction

Adaptive Kalman filtering in Golang

License GoDoc goreportcard

go get github.com/konimarti/kalman

  • Adaptive Kalman filtering with Rapid Ongoing Stochastic covariance Estimation (ROSE)

  • A helpful introduction to how Kalman filters work, can be found here.

  • Kalman filters are based on a state-space representation of linear, time-invariant systems:

    The next state is defined as

    $$x(t+1) = A_d * x(t) + B_d * u(t)$$

    where A_d is the discretized prediction matrix and B_d the control matrix. x(t) is the current state and u(t) the external input. The response (measurement) of the system is y(t):

    $$y(t) = C * x(t) + D * u(t)$$

Using the standard Kalman filter

	// create filter
	filter := kalman.NewFilter(
		lti.Discrete{
			Ad, // prediction matrix (n x n)
			Bd, // control matrix (n x k)
			C,  // measurement matrix (l x n)
			D,  // measurement matrix (l x k)
		},
		kalman.Noise{
			Q, // process model covariance matrix (n x n)
			R, // measurement errors (l x l)
		},
	)

	// create context
	ctx := kalman.Context{
		X, // initial state (n x 1)
		P, // initial process covariance (n x n)
	}

	// get measurement (l x 1) and control (k x 1) vectors
	..

	// apply filter
	filteredMeasurement := filter.Apply(&ctx, measurement, control)
}

Results with standard Kalman filter

Results of Kalman filtering on car example.

See example here.

Results with Rapid Ongoing Stochasic covariance Estimation (ROSE) filter

Results of ROSE filtering.

See example here.

Math behind the Kalman filter

  • Calculation of the Kalman gain and the correction of the state vector ~x(k) and covariance matrix ~P(k): $$^y(k) = C * ^x(k) + D * u(k) dy(k) = y(k) - ^y(k) K(k) = ^P(k) * C^T * ( C * ^P(k) * C^T + R(k) )^(-1) ~x(k) = ^x(k) + K(k) * dy(k) ~P(k) = ( I - K(k) * C) * ^P(k)$$
  • Then the next step is predicted for the state ^x(k+1) and the covariance ^P(k+1): $$^x(k+1) = Ad * ~x(k) + Bd * u(k) ^P(k+1) = Ad * ~P(k) * Ad^T + Gd * Q(k) * Gd^T$$

Credits

This software package has been developed for and is in production at Kalkfabrik Netstal.

kalman's People

Contributors

konimarti avatar

Watchers

James Cloos avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.