Giter Club home page Giter Club logo

celllistmap.jl's Introduction

CellListMap.jl

This package is for computing interactions or any other property that is dependent on the distances between pairs of two- or three-dimensional particles, within a cutoff. It maps a function to be computed pairwise using cell lists, using periodic boundary conditions of any type. Parallel and serial implementations can be used.

It allows the fast computation of any quantity from the pairs that are within the desired cutoff, for example pairwise potentials and forces, neighbor lists, minimum distances, an average distance or an histogram of distances, etc. This is done by passing the function to be evaluated as a parameter of the map_pairwise! function.

The user guide provides direct examples of each of these applications.

Installation

Download and install Julia for your platform from this http url. Version 1.6 or greater is required.

Install it as usual for registered Julia packages:

julia> import Pkg

julia> Pkg.add("CellListMap")

Brief overview

The main function is map_parwise!:

If the analysis is performed on the pairs of a single vector x (n*(n-1)/2 pairs), the function can be called with:

map_pairwise!(f::Function,output,box::Box,cl::CellList)

while if two distinct sets of points are provided (n*m pairs), it is called with:

map_pairwise!(f::Function,output,box::Box,cl::CellListPair)

where the cl variable of type CellList or CellListPair contains the cell lists built from the coordinates of the system, and box contains the system box properties.

These functions will run over every pair of particles which are closer than box.cutoff and compute the (squared) Euclidean distance between the particles, considering the periodic boundary conditions given in the Box structure. If the distance is smaller than the cutoff, a user defined function f of the coordinates of the two particles will be computed.

The function f receives six arguments as input:

f(x,y,i,j,d2,output)

Which are the coordinates of one particle, the coordinates of the second particle, the index of the first particle, the index of the second particle, the squared distance between them, and the output variable. It has also to return the same output variable. Thus, f may or not mutate output, but in either case it must return it. The squared distance d2 is computed internally for comparison with the cutoff, and is passed to the f because many times it is used for the desired computation. Thus, the function f that is passed to map_pairwise! must be always of the form:

function f(x,y,i,j,d2,output)
    # update output
    return output
end

and the user can define more or less parameters or additional data required to compute the function using closures, as shown in the examples.

Parallel calculations are the default if more than one thread is available. Use parallel=false as an optional argument to map_pairwise! to run the serial version instead.

Some benchmarks

The goal here is to provide a good implementation of cell lists. We compare it with the implementation of the nice cython/python halotools package, in the computation of an histogram of mean pairwise velocities.

The full test is available at this repository. And we kindly thank Carolina Cuesta for providing the example. These benchmarks were run on an Intel i7 8th gen laptop, with 4 cores (8 threads).

Citation

If you use this software and need to cite it, please use the following reference:

L. Martínez, CellListMap.jl: Efficient and customizable cell list implementation for calculation of pairwise particle properties within a cutoff. Computer Physics Communications, 279, 108452, 2022. https://doi.org/10.1016/j.cpc.2022.108452

Tests CellListMap Downloads

celllistmap.jl's People

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.