Giter Club home page Giter Club logo

cpu_features's Introduction

cpu_features Build Status Build status

A cross-platform C library to retrieve CPU features (such as available instructions) at runtime.

Design Rationale

  • Simple to use. See the snippets below for examples.
  • Extensible. Easy to add missing features or architectures.
  • Compatible with old compilers and available on many architectures so it can be used widely. To ensure that cpu_features works on as many platforms as possible, we implemented it in a highly portable version of C: gnu89.
  • Sandbox-compatible. The library uses a variety of strategies to cope with sandboxed environments or when cpuid is unavailable. This is useful when running integration tests in hermetic environments.
  • Thread safe, no memory allocation, and raises no exceptions. cpu_features is suitable for implementing fundamental libc functions like malloc, memcpy, and memcmp.
  • Unit tested.

Checking features at runtime

Here's a simple example that executes a codepath if the CPU supports both the AES and the SSE4.2 instruction sets:

#include "cpuinfo_x86.h"

static const X86Features features = GetX86Info().features;

void Compute(void) {
  if(features.aes && features.sse4_2) {
    // Run optimized code.
  } else {
    // Run standard code.
  }
}

Caching for faster evaluation of complex checks

If you wish, you can read all the features at once into a global variable, and then query for the specific features you care about. Below, we store all the ARM features and then check whether AES and NEON are supported.

#include "cpuinfo_arm.h"

static const ArmFeatures features = GetArmInfo().features;
static const bool has_aes_and_neon = features.aes && features.neon;

// use has_aes_and_neon.

This is a good approach to take if you're checking for combinations of features when using a compiler that is slow to extract individual bits from bit-packed structures.

Checking compile time flags

The following code determines whether the compiler was told to use the AVX instruction set (e.g., g++ -mavx) and sets has_avx accordingly.

#include "cpuinfo_x86.h"

static const X86Features features = GetX86Info().features;
static const bool has_avx = CPU_FEATURES_COMPILED_X86_AVX || features.avx;

// use has_avx.

CPU_FEATURES_COMPILED_X86_AVX is set to 1 if the compiler was instructed to use AVX and 0 otherwise, combining compile time and runtime knowledge.

Rejecting poor hardware implementations based on microarchitecture

On x86, the first incarnation of a feature in a microarchitecture might not be the most efficient (e.g., AVX on Sandy Bridge). We provide a function to retrieve the underlying microarchitecture so you can decide whether to use it.

Below, has_fast_avx is set to 1 if the CPU supports the AVX instruction set—but only if it's not Sandy Bridge.

#include "cpuinfo_x86.h"

static const X86Info info = GetX86Info();
static const X86Microarchitecture uarch = GetX86Microarchitecture(&info);
static const bool has_fast_avx = info.features.avx && uarch != INTEL_SNB;

// use has_fast_avx.

This feature is currently available only for x86 microarchitectures.

What's supported

x86 ARM AArch64 MIPS POWER
Features revealed from CPU yes no* no* not yet not yet
Features revealed from Linux no yes yes yes not yet
Microarchitecture detection yes no no no not yet
Windows support yes no no no not yet
  • Features revealed from CPU. features are retrieved by using the cpuid instruction. *Unfortunately this instruction is privileged for some architectures, in which case we fall back to Linux.
  • Features revealed from Linux. We gather data from several sources depending on availability:
    • from glibc's getauxval
    • by parsing /proc/self/auxv
    • by parsing /proc/cpuinfo
  • Microarchitecture detection. On x86 some features are not always implemented efficiently in hardware (e.g. AVX on Sandybridge). Exposing the microarchitecture allows the client to reject particular microarchitectures.

cpu_features's People

Contributors

gchatelet avatar

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.