Giter Club home page Giter Club logo

arachne's Introduction

Arachne: Towards Core-Aware Scheduling

What is core aware scheduling?

In today's large-scale data center systems, there are many complex software components which make a binary trade-off between latency and throughput. They either overprovision their systems to obtain lower latencies and consequently waste resources, or oversubscribe their systems and experience very high latencies due to imbalance between application load and system resources.

Core-aware scheduling is the notion that we can balance an application's offered load to a system's available resources by scheduling threads at user level, and performing coarse-grained core allocation at operating system level.

Under this approach, the kernel no longer preemptively multiplexes between threads without any awareness of what the application is doing. This enables us to avoid the performance degradations caused by slow context switches, priority inversion, and cache pollution from the threads of other processes.

What is Arachne?

According to Greek mythology, Arachne was a mortal weaver who challenged the goddess Athena to a weaving competition. Similarly, the Arachne user threading system attempts to challenge the current dominance of kernel threads in the C++ world.

Arachne is the first step towards core-aware scheduling, allowing an application to run only as many threads in parallel as cores available to it.

Arachne is a user-level, cooperative thread management system written in C++, designed to improve core utilization and maximize throughput in server applications without impacting latency. It performs M:N scheduling over kernel threads running exclusively on CPU cores and features ~200 ns cross-core thread creations and ~100 ns cross-core signals on Nehalem X3470. Arachne also estimates CPU load and adjusts the number of cores accordingly.

How do I use it?

  1. Recursively clone Arachne super repository.

     git clone --recursive https://github.com/PlatformLab/arachne-all.git
    
  2. Build the library with ./buildAll.sh in the top level directory.

     cd arachne-all
     ./buildAll.sh
    
  3. Write your application using the public Arachne API, documented here.

    #include <stdio.h>
    #include "Arachne/Arachne.h"

    void numberPrinter(int n) {
        printf("NumberPrinter says %d\n", n);
    }

    // This is where user code should start running.
    void AppMain(int argc, const char** argv) {
        printf("Arachne says hello world and creates a thread.\n");
        auto tid = Arachne::createThread(numberPrinter, 5);
        Arachne::join(tid);
    }

    // The following bootstrapping code should be copied verbatim into most Arachne
    // applications.
    void AppMainWrapper(int argc, const char** argv) {
        AppMain(argc, argv);
        Arachne::shutDown();
    }
    int main(int argc, const char** argv){
        Arachne::init(&argc, argv);
        Arachne::createThread(&AppMainWrapper, argc, argv);
        Arachne::waitForTermination();
    }
  1. Link your application against Arachne.

     g++ -std=c++11 -o MyApp MyApp.cc  -Iarachne-all/Arachne/include -Iarachne-all/CoreArbiter/include  -Iarachne-all/PerfUtils/include -Larachne-all/Arachne/lib -lArachne -Larachne-all/CoreArbiter/lib -lCoreArbiter -Larachne-all/PerfUtils/lib/ -lPerfUtils  -lpcrecpp -pthread
    

User Threading vs Kernel Threadpool

For those who are unfamiliar with the benefits of user threading, it may seem that a simple kernel thread pool would achieve the same result as a user threading library. However, tasks running in a kernel thread pool generally should not block at user level, so they must run to completion without blocking.

Here is an example of a use case that would require manual stack ripping in a thread pool, but could be implemented as a single function under Arachne.

arachne's People

Watchers

 avatar  avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.