Giter Club home page Giter Club logo

role2vec's Introduction

Role2Vec

Arxiv codebeat badge repo size benedekrozemberczki

A scalable parallel gensim implementation of Learning Role-based Graph Embeddings (IJCAI 2018).


Abstract

Random walks are at the heart of many existing network embedding methods. However, such algorithms have many limitations that arise from the use of random walks, e.g., the features resulting from these methods are unable to transfer to new nodes and graphs as they are tied to vertex identity. In this work, we introduce the Role2Vec framework which uses the flexible notion of attributed random walks, and serves as a basis for generalizing existing methods such as DeepWalk, node2vec, and many others that leverage random walks. Our proposed framework enables these methods to be more widely applicable for both transductive and inductive learning as well as for use on graphs with attributes (if available). This is achieved by learning functions that generalize to new nodes and graphs. We show that our proposed framework is effective with an average AUC improvement of 16.55% while requiring on average 853x less space than existing methods on a variety of graphs.

The second-order random walk sampling methods were taken from the reference implementation of Node2vec.

The model is now also available in the package Karate Club.

This repository provides an implementation of Role2Vec as described in the paper:

Learning Role-based Graph Embeddings. Nesreen K. Ahmed, Ryan Rossi, John Boaz Lee, Theodore L. Willke, Rong Zhou, Xiangnan Kong, Hoda Eldardiry. StarAI workshop - IJCAI, 2018. [Paper]

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
gensim            3.6.0
scikit-learn      0.20.0

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory.

Training the model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --graph-input      STR   Input graph path.   Default is `input/cora_edges.csv`.
  --output           STR   Embeddings path.    Default is `output/cora_role2vec.csv`.

Random walk options

  --window-size      INT    Skip-gram window size.        Default is 5.
  --walk-number      INT    Number of walks per node.     Default is 10.
  --walk-length      INT    Number of nodes in walk.      Default is 80.
  --sampling         STR    Sampling procedure.           Default is `first`.
  --P                FLOAT  Return parameter.             Default is 1.0.
  --Q                FLOAT  In-out parameter.             Default is 1.0.

Factorization options

  --dimensions      INT      Number of dimensions.      Default is 128
  --down-sampling   FLOAT    Down sampling frequency.   Default is 0.001.
  --alpha           FLOAT    Initial learning rate.     Default is 0.025.
  --min-alpha       FLOAT    Final learning rate.       Default is 0.025.
  --min-count       INT      Minimal feature count.     Default is 1
  --workers         INT      Number of cores.           Default is 4.
  --epochs          INT      Number of epochs.          Default is 10.

Feature creation options

  --features               STR     Feature extraction mechanism.         Default is `wl`.
  --labeling-iterations    INT     Number of WL labeling iterations.     Default is 2.
  --log-base               FLOAT   Log base for label creation.          Default is 1.5.
  --graphlet-size          INT     Maximal graphlet size.                Default is 4.
  --quantiles              INT     Number of quantiles for binning.      Default is 5.
  --motif-compression      STR     Motif compression procedure.          Default is `string`.
  --seed                   INT     Sklearn random seed.                  Default is 42.
  --factors                INT     Factors for motif compression.        Default is 8.
  --clusters               INT     Number of motif based labels.         Default is 50.
  --beta                   FLOAT   Motif compression regularizer.        Default is 0.01.

Examples

The following commands learn a Role2Vec embedding. The first example trains an embedding based on the default dataset with standard hyperparameter settings. The script saves the embedding at the default path.

``` python src/main.py ```

Using the degree centrality as a structural feature.

python src/main.py --features degree

Using the Weisfeiler-Lehman labeling as a structural feature.

python src/main.py --features wl

Using motif based structural features with factorization compression.

python src/main.py --features motif --motif-compression factorization

Using motif based structural features with factorization compression and a structural label number of 40.

python src/main.py --features motif --motif-compression factorization --clusters 40

Using a custom factorization dimension for the embedding.

python src/main.py --dimensions 32

Using second-order attributed ranom walks for sampling.

python src/main.py --sampling second --P 1 --Q 4

License


role2vec's People

Contributors

benedekrozemberczki avatar dubeyakshat07 avatar

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

role2vec's Issues

How to use the trained model for infering nodes structural representation in new graphs. i.e. transfer learning

I tried to use the trained model for new graphs. What I first tried was:

 def infer_embedding(self,learned_model = "doc2vec4role2vec"):
        """
        Pooling the features and infer an embedding using trained model
        """
        self.pooled_features = self.create_pooled_features()
        model = Doc2Vec.load(learned_model)
        inferlist = []
        print("begin infering...")
        for node in self.graph.nodes():
            inferlist.append(model.infer_vector(self.pooled_features[str(node)]))
        self.embedding = np.array(inferlist)
        return self.embedding

And then use the save_embedding function to save the embedding. But the embedding I got was quite different from the training time output, which was generated by

embedding = np.array([model.docvecs[str(node)] for node in self.graph.nodes()])

Then I tried not using the pooled_features generated by random walk.

 def infer_embedding(self,learned_model = "doc2vec4role2vec"):
        """
        Pooling the features and infer an embedding using trained model
        """
        model = Doc2Vec.load(learned_model)
        inferlist = []
        print("begin infering...")
        for node in self.graph.nodes():
            inferlist.append(model.infer_vector(self.features[str(node)]))
        self.embedding = np.array(inferlist)
        return self.embedding

But it's still different from the trained model.

As the author said in their paper, the framework is naturally inductive. So can anyone hint me how to use it in a transfer learning way? Thanks in advance.

run error

  1. SyntaxError: EOL while scanning string literal in role2vec.py line1
  2. "embedding" is referenced before assignment in role2vec.py line101

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.