Giter Club home page Giter Club logo

auxilearn's Introduction

AuxiLearn - Auxiliary Learning by Implicit Differentiation

This repository contains the source code to support the paper Auxiliary Learning by Implicit Differentiation, by Aviv Navon*, Idan Achituve*, Haggai Maron, Gal Chechikโ€  and Ethan Fetayaโ€ , ICLR 2021.


Links

  1. Paper
  2. Project page

Installation

Please note: We encountered some issues and drops in performance while working with different PyTorch versions. Please install AuxiLearn on a clean virtual environment!

python3 -m venv <venv>
source <venv>/bin/activate

On a clean virtual environment clone the repo and install:

git clone https://github.com/AvivNavon/AuxiLearn.git
cd AuxiLearn
pip install .

Usage

Given a bi-level optimization problem in which the upper-level parameters (i.e., auxiliary parameters) are only implicitly affecting the upper-level objective, you can use auxilearn to compute the upper-level gradients through implicit differentiation.

The main code component you will need to use is auxilearn.optim.MetaOptimizer. It is a wrapper over PyTorch optimizers that updates its parameters through implicit differentiation.

Code example

We assume two models, primary_model and auxiliary_model, and two dataloaders. The primary_model is optimized using the train data in the train_loader, and the auxiliary_model is optimized using the auxiliary set in the aux_loader. We assume a loss_fuction that return the train loss if train=True, or auxiliary set loss if train=False. Also, we assume the training loss is a function of both the primary parameters and the auxiliary parameters, and that the loss on the auxiliary set (or validation set) is a function of the primary parameters only. In Auxiliary Learning, the auxiliary set loss is the loss on the main task (see paper for more details).

from auxilearn.optim import MetaOptimizer

primary_model = MyModel()
auxiliary_model = MyAuxiliaryModel()
# optimizers
primary_optimizer = torch.optim.Adam(primary_model.parameters())

aux_lr = 1e-4
aux_base_optimizer = torch.optim.Adam(auxiliary_model.parameters(), lr=aux_lr)
aux_optimizer = MetaOptimizer(aux_base_optimizer, hpo_lr=aux_lr)

# training loop
step = 0
for epoch in range(epochs):
    for batch in train_loder:
        step += 1
        # calculate batch loss using 'primary_model' and 'auxiliary_model'
        primary_optimizer.zero_grad()
        loss = loss_func(train=True)
        # update primary parameters
        loss.backward()
        primary_optimizer.step()
        
        # condition for updating auxiliary parameters
        if step % aux_params_update_every == 0:
            # calc current train loss
            train_set_loss = loss_func(train=True)
            # calc current auxiliary set loss - this is the loss over the main task
            auxiliary_set_loss = loss_func(train=False) 
            
            # update auxiliary parameters - no need to call loss.backwards() or aux_optimizer.zero_grad()
            aux_optimizer.step(
                val_loss=auxiliary_set_loss,
                train_loss=train_set_loss,
                aux_params=auxiliary_model.parameters(),
                parameters=primary_model.parameters(),
            )

Citation

If you find auxilearn to be useful in your own research, please consider citing the following paper:

@inproceedings{
navon2021auxiliary,
title={Auxiliary Learning by Implicit Differentiation},
author={Aviv Navon and Idan Achituve and Haggai Maron and Gal Chechik and Ethan Fetaya},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=n7wIfYPdVet}
}

auxilearn's People

Stargazers

 avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar  avatar

Watchers

 avatar  avatar  avatar  avatar  avatar

auxilearn's Issues

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.