Giter Club home page Giter Club logo

arnaudmallet / dermato_dl Goto Github PK

View Code? Open in Web Editor NEW
0.0 1.0 0.0 3.83 MB

Based on the 2017 ISIC challenge on Skin Lesion Analysis Towards Melanoma Detection, this repository aims to review different solutions that were used and try to come as close as possible to the result of this challenge and perhaps to provide additional features.

Home Page: https://challenge.kitware.com/#challenge/583f126bcad3a51cc66c8d9a

Jupyter Notebook 99.83% Python 0.17%

dermato_dl's Introduction

Dermatologist AI

Excellent mini-project presented by Sebastien Thrun

Getting started

  1. Create folders to hold the training, validation, and test images.
mkdir train; mkdir valid; mkdir test
  1. Download and unzip the training data (5.3 GB).

  2. Download and unzip the validation data (824.5 MB).

  3. Download and unzip the test data (5.1 GB).

  4. Place the training, validation, and test images in the data/ folder, at data/train/, data/valid/, and data/test/, respectively. Each folder should contain three sub-folders (melanoma/, nevus/, seborrheic_keratosis/), each containing representative images from one of the three image classes.

You are free to use any coding environment of your choice to solve this mini project! In order to rank your results, you need only use a pipeline that culminates in a CSV file containing your test predictions.

Create a Model

If you would like to read more about some of the algorithms that were successful in this competition, please read this article that discusses some of the best approaches. A few of the corresponding research papers appear below.

While the original challenge provided additional data (such as the gender and age of the patients), we only provide the image data to you. If you would like to download this additional patient data, you may do so at the competition website.

All three of the above teams increased the number of images in the training set with additional data sources. If you'd like to expand your training set, you are encouraged to begin with the ISIC Archive.

Goal of this repository

Throughout this repository, we will try to evaluate the various pretrained model available on these datasets. We will evaluate the results against the various ROC categories specified below

Category 1: ROC AUC for Melanoma Classification

In the first category, we will gauge the ability of your CNN to distinguish between malignant melanoma and the benign skin lesions (nevus, seborrheic keratosis) by calculating the area under the receiver operating characteristic curve (ROC AUC) corresponding to this binary classification task.

If you are unfamiliar with ROC (Receiver Operating Characteristic) curves and would like to learn more, you can check out the documentation in scikit-learn or read this Wikipedia article.

The top scores (from the ISIC competition) in this category can be found in the image below.

![Category 1 Rankings][image2]

Category 2: ROC AUC for Melanocytic Classification

All of the skin lesions that we will examine are caused by abnormal growth of either melanocytes or keratinocytes, which are two different types of epidermal skin cells. Melanomas and nevi are derived from melanocytes, whereas seborrheic keratoses are derived from keratinocytes.

In the second category, we will test the ability of your CNN to distinuish between melanocytic and keratinocytic skin lesions by calculating the area under the receiver operating characteristic curve (ROC AUC) corresponding to this binary classification task.

The top scores in this category (from the ISIC competition) can be found in the image below.

![Category 2 Rankings][image3]

Category 3: Mean ROC AUC

In the third category, we will take the average of the ROC AUC values from the first two categories.

The top scores in this category (from the ISIC competition) can be found in the image below.

![Category 3 Rankings][image4]

Contribution

Add as many model as possible in different Jupyter notebook.

  1. Dermato_ai.ipynb will provide some outlines so we can follow the same logic for the various pretrained model
  2. Create an IPYNB for each model Dermato_ai_vgg16, Dermato_ai_resnet...

Version

import os import random import requests import time import ast import numpy as np from glob import glob import cv2
from PIL import Image, ImageFile import time from collections import OrderedDict

import torch import torchvision from torchvision import datasets import torchvision.transforms as transforms import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torchvision.models as models

import matplotlib.pyplot as plt
%matplotlib inline

Import Helper

license

Copyright (c) 2017 Udacity, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

dermato_dl's People

Contributors

arnaudmallet avatar

Watchers

 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.