Giter Club home page Giter Club logo

adrpy's Introduction

ADRpy

Aircraft Design Recipes in Python

PyPI version Build Status

A library of aircraft conceptual design and performance analysis tools, including virtual (design) atmospheres, constraint analysis methods, propulsion system performance models, conversion functions and much else.

For a detailed description of the library, please consult the Documentation. To get started, follow the instructions below.

For video tutorials and explainers (a.k.a. ADRpy Shorts) scroll to the bottom of this page.

author: Andras Sobester

Installation / Usage

ADRpy is written in Python 3 and tested in Python 3.5, 3.6, 3.7 and 3.8.

It is not available for Python 2.

On most systems you should be able to simply open an operating system terminal and at the command prompt type

$ pip install ADRpy

or

$ python -m pip install ADRpy

NOTE: pip is a Python package; if it is not available on your system, download get-pip.py and run it in Python by entering

$ python get-pip.py

at the operating system prompt.

An alternative approach to installing ADRpy is to clone the GitHub repository, by typing

$ git clone https://github.com/sobester/ADRpy.git

at the command prompt and then executing the setup file in the same directory by entering:

$ python setup.py install

A 'hello world' example: atmospheric properties

There are several options for running the examples shown here: you could copy and paste them into a .py file, save it and run it in Python, or you could enter the lines, in sequence, at the prompt of a Python terminal. You could also copy and paste them into a Jupyter notebook (.ipynb file) cell and execute the cell.

from ADRpy import atmospheres as at
from ADRpy import unitconversions as co

# Instantiate an atmosphere object: an ISA with a +10C offset
isa = at.Atmosphere(offset_deg=10)

# Query the ambient density in this model at 41,000 feet 
print("ISA+10C density at 41,000 feet (geopotential):", 
      isa.airdens_kgpm3(co.feet2m(41000)), "kg/m^3")

You should see the following output:

ISA+10C density at 41,000 feet (geopotential): 0.274725888531 kg/m^3

A design example: wing/powerplant sizing for take-off

# Compute the thrust to weight ratio required for take-off, given
# a basic design brief, a basic design definition and a set of 
# atmospheric conditions

from ADRpy import atmospheres as at
from ADRpy import constraintanalysis as ca
from ADRpy import unitconversions as co


# The environment: 'unusually high temperature at 5km' atmosphere
# from MIL-HDBK-310. 

# Extract the relevant atmospheric profiles...
profile_ht5_1percentile, _ = at.mil_hdbk_310('high', 'temp', 5)

# ...then use them to create an atmosphere object 
m310_ht5 = at.Atmosphere(profile=profile_ht5_1percentile)

#====================================================================

# The take-off aspects of the design brief:
designbrief = {'rwyelevation_m':1000, 'groundrun_m':1200}

# Basic features of the concept:
# aspect ratio, engine bypass ratio, throttle ratio 
designdefinition = {'aspectratio':7.3, 'bpr':3.9, 'tr':1.05}

# Initial estimates of aerodynamic performance:
designperf = {'CDTO':0.04, 'CLTO':0.9, 'CLmaxTO':1.6,
              'mu_R':0.02} # ...and wheel rolling resistance coeff.

# An aircraft concept object can now be instantiated
concept = ca.AircraftConcept(designbrief, designdefinition,
                             designperf, m310_ht5)

#====================================================================

# Compute the required standard day sea level thrust/MTOW ratio reqd.
# for the target take-off performance at a range of wing loadings:
wingloadinglist_pa = [2000, 3000, 4000, 5000]

tw_sl, liftoffspeed_mpstas, _ = concept.twrequired_to(wingloadinglist_pa)

# The take-off constraint calculation also supplies an estimate of
# the lift-off speed; this is TAS (assuming zero wind) - we convert 
# it to equivalent airspeed (EAS), in m/s:
liftoffspeed_mpseas = \
m310_ht5.tas2eas(liftoffspeed_mpstas, designbrief['rwyelevation_m'])

print("Required T/W and V_liftoff under MIL-HDBK-310 conditions:")
print("\nT/W (std. day, SL, static thrust):", tw_sl)
print("\nLiftoff speed (KEAS):", co.mps2kts(liftoffspeed_mpseas))

You should see the following output:

Required T/W and V_liftoff under MIL-HDBK-310 conditions:

T/W (std. day, SL, static thrust): [ 0.19618164  0.2710746   0.34472518  0.41715311]

Liftoff speed (KEAS): [  96.99203483  118.79049722  137.1674511   153.35787248]

More extensive examples - a library of notebooks

To view them on GitHub, go to ADRpy's notebooks folder.

Alternatively, grab the whole repository as a .zip by clicking the big, green 'Code' button at the top of this page.

ADRpy Shorts - video tutorials and explainers

1. An Aircraft Engineer's Brief Introduction to Modelling the Atmosphere

1. An Aircraft Engineer's Brief Introduction to Modelling the Atmosphere

2. On V-n Diagrams and How to Build them in ADRpy

2. On V-n Diagrams and How to Build them in ADRpy

3. Speed in aviation - GS, WS, TAS, IAS, CAS and EAS

3. Speed in aviation - GS, WS, TAS, IAS, CAS and EAS

4. Wing and propulsion system sizing with ADRpy

4. Wing and propulsion system sizing

adrpy's People

Contributors

sobester avatar yaseen157 avatar samuelmarkpearson avatar alfielockrey avatar xorgon avatar sharif9876 avatar

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    ๐Ÿ–– Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. ๐Ÿ“Š๐Ÿ“ˆ๐ŸŽ‰

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google โค๏ธ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.