Giter Club home page Giter Club logo

Hi! U are the -th visitor

I am currently a Postdoctoral Research Fellow in cooperation with Prof. Shaohua Wan at the Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China (UESTC), Shenzhen, China. I received the Ph.D. degree in Computer Science from the College of Computer Science at the Chongqing University (CQU), Chongqing, China, in 2023 and the B.S. degree in Network Engineering from the School of Computer and Control Engineering at the North University of China (NUC), Taiyuan, China, in 2017. I have authored and co-authored more than 10 papers with total google scholar .

My research interests include:

  • Vehicular Networks
  • Vehicular Cyber-Physical Systems
  • Edge Computing
  • Deep Reinforcement Learning
  • Game Theory

🔥 News

  • 2023.04: My GitHub stars have reached 100!
  • 2022.10: 🎉🎉 One paper is accepted by JSA!
  • 2022.10: 🎉🎉 My google scholar citations have reached 100!
  • 2022.09: One invention patent is granted!
  • 2022.06: One paper is accepted by IEEE ITSC 2022!

🕒 Recent Research

DT-VEC

Enabling Digital Twin in Vehicular Edge Computing: A Multi-Agent Multi-Objective Deep Reinforcement Learning Solution
Xincao Xu, Kai Liu, Penglin Dai, and Biwen Chen

  • We present a DT-VEC architecture, where the heterogeneous information can be sensed by vehicles and uploaded to the edge node via V2I communications. The DT-VEC are modeled at the edge node, forming a logical view to reflect the physical vehicular environment.
  • We model the DT-VEC by deriving an ISAC-assisted sensing model and a reliability-guaranteed uploading model.
  • We formulate the bi-objective problem to maximize the system quality and minimize the system cost, simultaneously. In particular, we define the quality of DT-VEC by considering the timeliness and consistency, and define the cost of DT-VEC by considering the redundancy, sensing cost, and transmission cost.
  • We propose a multi-agent multi-objective (MAMO) deep reinforcement learning solution implemented distributedly in the vehicles and the edge nodes. Specifically, a dueling critic network is proposed to evaluate the advantage of action over the average of random actions.
  • Submitted to IEEE Transactions on Consumer Electronics (under review)
VCPS

Cooperative Sensing and Heterogeneous Information Fusion in VCPS: A Multi-agent Deep Reinforcement Learning Approach
Xincao Xu, Kai Liu, Penglin Dai, Ruitao Xie, and Jiangtao Luo

  • We present a VEC architecture, in which heterogeneous information can be cooperatively sensed and uploaded via V2I communications. Logical views can be constructed by fusing the heterogeneous information at edge nodes.
  • We derive a cooperative sensing model based on the multi-class M/G/1 priority queue. On this basis, we define a noval metric AoV by modeling the timeliness, completeness, and consistency of the logical views.
  • We formulate the problem, which aims at maximizing the quality of VCPS.
  • We propose a multiagent DRL solution, where a difference-reward-based credit assignment is designed to divide the system reward into the difference reward for vehicles, reflecting their individual contributions.
  • Submitted to IEEE Transactions on Intelligent Transportation Systems (under review)
JSA 2022

Joint Task Offloading and Resource Optimization in NOMA-based Vehicular Edge Computing: A Game-Theoretic DRL Approach
Xincao Xu, Kai Liu, Penglin Dai, Feiyu Jin, Hualing Ren, Choujun Zhan, and Songtao Guo

  • We present a NOMA-based VEC architecture, where heterogeneous resources of edge nodes are cooperated for real-time task processing.
  • We derive a V2I transmission model by considering both intra-edge and inter-edge interference and formulate a cooperative resource optimization (CRO) problem by jointly optimizing real-time task offloading and heterogeneous resource allocation, aiming at maximizing the service ratio.
  • We decompose the CRO into two subproblems, namely, task offloading and resource alloction. The first subproblem is modeled as an EPG with Nash equilibrium (NE) existence and converagence, and a multi-agent D4PG algorithm is proposed to achieve the NE by adopting the potential function as reward function. The second subproblem is divided into two independent convex optimization problems, and an optimal solution is proposed based on a gradient-based iterative method and KKT condition.
  • Accepted by Journal of Systems Architecture (JCR Q1)

📖 Publications

JCR: Journal Citation Reports by Clarivate Com.
SCI: Journal Partition List by National Science Library, Chinese Academy of Sciences
CCF: Recommended Publications by China Computer Federation
*: Corresponding Author

Journal

Conference

Chinese Papers

  • Xincao Xu, Kai Liu*, Chunhui Liu, Hao Jiang, Songtao Guo and Weiwei Wu, Potential Game Based Channel Allocation for Vehicular Edge Computing, Tien Tzu Hsueh Pao/Acta Electronica Sinica, volume 49, issue 5, pp.851-860, July 2021. [CCF T1]
  • Xincao Xu, Yi Zhou, Kai Liu, Chaocen Xiang, Yantao Li and Songtao Guo, Potenial Game based Distributed Channel Allocation in Vehicular Fog Computing Environments, 14th China Conference on Internet of Things (CWSN’20), Dunhuang, China, September 18-21, 2020. (Best Paper Candidate)

💻 Coding

Neardws's GitHub stats

📊 Weekly development breakdown

Still Gathering Statistics...

Near's Projects

age-of-view icon age-of-view

Code of Paper "Age of view: A new metric for evaluating heterogeneous information fusion in vehicular cyber-physical systems", ITSC 2022.

awesome-citations icon awesome-citations

Refine your BibTeX file and obtain awesome citations with this powerful tool

awesome-dblp icon awesome-dblp

A simple python package to search dblp by keywords and venues.

awesome-mac icon awesome-mac

 Now we have become very big, Different from the original idea. Collect premium software in various categories.

bilibilitask icon bilibilitask

哔哩哔哩(B站)自动完成每日任务,投币,点赞,直播签到,自动兑换银瓜子为硬币,自动送出即将过期礼物,漫画App签到。

ceye icon ceye

V2I simulation, Baidu map location, Car trace

community icon community

Hi, uestcers, read the community rules and start your application here. 🚀🚀🚀

decision-transformer icon decision-transformer

Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

echosite icon echosite

EchoSite 源码,添加了收费的一些简单判断,账号和隧道权限是根据接口返回值来判断的。

hmmlearn icon hmmlearn

Hidden Markov Models in Python, with scikit-learn like API

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.