Giter Club home page Giter Club logo

Margo Oka's Projects

cs274 icon cs274

Delaunay Triangulation: Incremental Insertion Algorithms

cs61c-proj1 icon cs61c-proj1

You will be completing the implementation of flights.c, a flight system that keeps track of the flights between a series of airports. The flight system, represented by the struct flightSys_t, will hold all the airports in this system. Each airport, represented by the struct airport_t, will hold both its name (as a string) and a schedule of all the flights departing from it. Each entry in the schedule should contain: a pointer to the destination airport, time of departure, time of arrival, and the cost of the flight. These will be the contents of your flight_t struct. We have provided a program, RouteTime.c, which will both provide the data to your flight system and use the data you store to figure out the cost of flying via a certain route. You do not need to know how RouteTime.c works to complete the assignment. We have also provided you a struct, timeHM_t, defined in timeHM.h that is used to represent time in hours and minutes. It also contains several useful functions

cs61c-proj2-1 icon cs61c-proj2-1

In this part of the project, we will be writing an assembler that translates a subset of the MIPS instruction set to machine code. Our assembler is a two-pass assembler similar to the one described in lecture. However, we will only assemble the .text segment. At a high level, the functionality of our assembler can be divided as follows: Pass 1: Reads the input (.s) file Comments are stripped Pseudoinstructions are expanded The address of each label is recorded into the symbol table labels and pseudoinstructions are validated output: intermediate (.int) file. Pass 2: Read the intermediate (.int) file. Each instruction is translated to machine code. Instruction syntax and arguments are validated Relocation table is created output: object (.out) file. (include instructions, symbol table and relocation table)

cs61c-proj2-2 icon cs61c-proj2-2

In part 1 of this project, we wrote an assembler in C. Now, we will continue where we left off by implementing a linker in MIPS. The linker processes object files (which in our project are .out files) and generates an executable file. In the rest of this document, "input" will be used interchangeably with "object file", and "output" with "executable file". The linker has two main tasks, combining code and relocating symbols. Code from each input file's .text segment is merged together to create an executable. This also determines the absolute address of each symbol (recall that the assembler outputs a symbol table containing the relative address of each symbol). Since the absolute address is known, instructions that rely on absolute addressing can have the addresses filled in.

website icon website

A pet project for myself. I try to update it everyday but clearly that hasn't been working.

Recommend Projects

  • React photo React

    A declarative, efficient, and flexible JavaScript library for building user interfaces.

  • Vue.js photo Vue.js

    🖖 Vue.js is a progressive, incrementally-adoptable JavaScript framework for building UI on the web.

  • Typescript photo Typescript

    TypeScript is a superset of JavaScript that compiles to clean JavaScript output.

  • TensorFlow photo TensorFlow

    An Open Source Machine Learning Framework for Everyone

  • Django photo Django

    The Web framework for perfectionists with deadlines.

  • D3 photo D3

    Bring data to life with SVG, Canvas and HTML. 📊📈🎉

Recommend Topics

  • javascript

    JavaScript (JS) is a lightweight interpreted programming language with first-class functions.

  • web

    Some thing interesting about web. New door for the world.

  • server

    A server is a program made to process requests and deliver data to clients.

  • Machine learning

    Machine learning is a way of modeling and interpreting data that allows a piece of software to respond intelligently.

  • Game

    Some thing interesting about game, make everyone happy.

Recommend Org

  • Facebook photo Facebook

    We are working to build community through open source technology. NB: members must have two-factor auth.

  • Microsoft photo Microsoft

    Open source projects and samples from Microsoft.

  • Google photo Google

    Google ❤️ Open Source for everyone.

  • D3 photo D3

    Data-Driven Documents codes.